NJ
Natalia Jura
Author with expertise in Coronavirus Disease 2019 Research
University of California, San Francisco, Quantitative BioSciences, Pancreatic Cancer Action Network
+ 8 more
Achievements
Open Access Advocate
Cited Author
Key Stats
Upvotes received:
0
Publications:
14
(79% Open Access)
Cited by:
396
h-index:
35
/
i10-index:
53
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
11

An ultrapotent synthetic nanobody neutralizes SARS-CoV-2 by stabilizing inactive Spike

Michael Schoof et al.Feb 3, 2021
+109
R
B
M
The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) virus enters host cells via an interaction between its Spike protein and the host cell receptor angiotensin-converting enzyme 2 (ACE2). By screening a yeast surface-displayed library of synthetic nanobody sequences, we developed nanobodies that disrupt the interaction between Spike and ACE2. Cryo-electron microscopy (cryo-EM) revealed that one nanobody, Nb6, binds Spike in a fully inactive conformation with its receptor binding domains locked into their inaccessible down state, incapable of binding ACE2. Affinity maturation and structure-guided design of multivalency yielded a trivalent nanobody, mNb6-tri, with femtomolar affinity for Spike and picomolar neutralization of SARS-CoV-2 infection. mNb6-tri retains function after aerosolization, lyophilization, and heat treatment, which enables aerosol-mediated delivery of this potent neutralizer directly to the airway epithelia.
49

CryoEM and AI reveal a structure of SARS-CoV-2 Nsp2, a multifunctional protein involved in key host processes

Meghna Gupta et al.Oct 11, 2023
+77
M
C
M
The SARS-CoV-2 protein Nsp2 has been implicated in a wide range of viral processes, but its exact functions, and the structural basis of those functions, remain unknown. Here, we report an atomic model for full-length Nsp2 obtained by combining cryo-electron microscopy with deep learning-based structure prediction from AlphaFold2. The resulting structure reveals a highly-conserved zinc ion-binding site, suggesting a role for Nsp2 in RNA binding. Mapping emerging mutations from variants of SARS-CoV-2 on the resulting structure shows potential host-Nsp2 interaction regions. Using structural analysis together with affinity tagged purification mass spectrometry experiments, we identify Nsp2 mutants that are unable to interact with the actin-nucleation-promoting WASH protein complex or with GIGYF2, an inhibitor of translation initiation and modulator of ribosome-associated quality control. Our work suggests a potential role of Nsp2 in linking viral transcription within the viral replication-transcription complexes (RTC) to the translation initiation of the viral message. Collectively, the structure reported here, combined with mutant interaction mapping, provides a foundation for functional studies of this evolutionary conserved coronavirus protein and may assist future drug design.
49
Paper
Citation32
0
Save
0

The structure of a calsequestrin filament reveals mechanisms of familial arrhythmia

Erron Titus et al.May 7, 2020
+4
C
F
E
Mutations in the calcium-binding protein calsequestrin cause a highly lethal familial arrhythmia, catecholaminergic polymorphic ventricular tachycardia (CPVT). In vivo, calsequestrin multimerizes into filaments, but a compelling atomic-resolution structure of a calsequestrin filament is lacking. We report a crystal structure of a cardiac calsequestrin filament with supporting mutation analysis provided by an in vitro fomentation assay. We also report and characterize a novel disease-associated calsequestrin mutation, S173I, which localizes to the filament-forming interface. In addition, we show that a previously reported dominant disease mutation, K180R, maps to the same multimerization surface. Both mutations disrupt filamentation, suggesting that dominant disease arises from defects in multimer formation. A ytterbium-derivatized structure pinpoints multiple credible calcium sites at filament-forming interfaces, explaining the atomic basis of calsequestrin filamentation in the presence of calcium. This work advances our understanding of calsequestrin biochemistry and provides a unifying structure-function molecular mechanism by which dominant-acting calsequestrin mutations provoke lethal arrhythmias.
0
Citation5
0
Save
7

CNPY4 inhibits the Hedgehog pathway by modulating membrane sterol lipids

Megan Lo et al.May 25, 2022
+9
M
A
M
The Hedgehog (HH) pathway is critical for development and adult tissue homeostasis. Aberrant HH signaling can lead to congenital malformations and diseases including cancer. Although cholesterol and several oxysterol lipids have been shown to play crucial roles in HH activation, the molecular mechanisms governing their regulation remain unresolved. Here, we identify Canopy4 (CNPY4), a Saposin-like protein, as a regulator of the HH pathway that modulates levels of membrane sterol lipids. Cnpy4-/- embryos exhibit multiple defects consistent with HH signaling perturbations, most notably changes in digit number. Knockdown of Cnpy4 hyperactivates the HH pathway in vitro and elevates membrane levels of accessible sterol lipids, such as cholesterol, an endogenous ligand involved in HH activation. Our data demonstrate that CNPY4 is a negative regulator that fine-tunes HH signal transduction, revealing a previously undescribed facet of HH pathway regulation that operates through control of membrane composition.
7
Citation3
2
Save
38

Structures of the active HER2/HER3 receptor complex reveal dynamics at the dimerization interface induced by binding of a single ligand

Devan Diwanji et al.Oct 24, 2023
+4
T
R
D
Abstract The Human Epidermal Growth Factor Receptor 2 (HER2) and HER3 form a potent pro-oncogenic heterocomplex upon binding of growth factor neuregulin-1β (NRG1β) 1–3 . The mechanism by which HER2 and HER3 interact remains unknown in the absence of any structures of the complex. We isolated the NRG1β-bound near full-length HER2/HER3 dimer and obtained a 2.9Å cryo-electron microscopy (cryo-EM) reconstruction of the extracellular domain module which reveals unexpected dynamics at the HER2/HER3 dimerization interface. We show that the dimerization arm of NRG1β-bound HER3 is unresolved likely because the apo HER2 monomer fails to undergo a ligand-induced conformational change needed to establish a HER3 dimerization arm binding pocket. In a second structure of an oncogenic extracellular domain mutant of HER2, S310F, we observe a compensatory interaction with the HER3 dimerization arm that stabilizes the dimerization interface. We show that both HER2/HER3 and HER2-S310F/HER3 retain the capacity to bind to the HER2-directed therapeutic antibody, trastuzumab, but the mutant complex does not bind to pertuzumab. Our 3.5Å structure of the HER2-S310F/HER3/NRG1β/trastuzumab Fragment antigen binding (Fab) complex shows that the receptor dimer undergoes a conformational change to accommodate trastuzumab. Thus, like oncogenic mutations, therapeutics exploit the intrinsic dynamics of the HER2/HER3 heterodimer. The unique features of a singly liganded HER2/HER3 heterodimer underscore the allosteric sensing of the ligand occupancy by the dimerization interface and explain why extracellular domains of HER2 do not homo-associate via canonical active dimer interface.
16

Structural insights into regulation of the PEAK3 pseudokinase scaffold by 14-3-3

Hayarpi Torosyan et al.Oct 24, 2023
+6
A
M
H
Abstract The three members of the PEAK family of pseudokinases (PEAK1, PEAK2, and PEAK3) are molecular scaffolds that have recently emerged as important regulatory nodes in signaling pathways that control cell migration, morphology, and proliferation, and they are increasingly found to be mis-regulated in human cancers. While no structures of PEAK3 have been solved to date, crystal structures of the PEAK1 and PEAK2 pseudokinase domains revealed their dimeric organization. It remains unclear how dimerization plays a role in PEAK scaffolding functions, as no structures of PEAK family members in complex with their binding partners have been solved. Here, we report the cryo-EM structure of the PEAK3 pseudokinase, also adopting a dimeric state, and in complex with an endogenous 14-3-3 heterodimer purified from mammalian cells. Our structure reveals an asymmetric binding mode between PEAK3 and 14-3-3 stabilized by one pseudokinase domain and the Split HElical Dimerization (SHED) domain of the PEAK3 dimer. The binding interface is comprised of a canonical primary interaction involving two phosphorylated 14-3-3 consensus binding sites located in the N-terminal domains of the PEAK3 monomers docked in the conserved amphipathic grooves of the 14-3-3 dimer, and a unique secondary interaction between 14-3-3 and PEAK3 that has not been observed in any previous structures of 14-3-3/client complexes. Disruption of these interactions results in the relocation of PEAK3 to the nucleus and changes its cellular interactome. Lastly, we identify Protein Kinase D as the regulator of the PEAK3/14-3-3 interaction, providing a mechanism by which the diverse functions of the PEAK3 scaffold might be fine-tuned in cells.
16
Citation1
0
Save
49

Fragment Binding to the Nsp3 Macrodomain of SARS-CoV-2 Identified Through Crystallographic Screening and Computational Docking

M. Schuller et al.Oct 24, 2023
+49
S
G
M
ABSTRACT The SARS-CoV-2 macrodomain (Mac1) within the non-structural protein 3 (Nsp3) counteracts host-mediated antiviral ADP-ribosylation signalling. This enzyme is a promising antiviral target because catalytic mutations render viruses non-pathogenic. Here, we report a massive crystallographic screening and computational docking effort, identifying new chemical matter primarily targeting the active site of the macrodomain. Crystallographic screening of diverse fragment libraries resulted in 214 unique macrodomain-binding fragments, out of 2,683 screened. An additional 60 molecules were selected from docking over 20 million fragments, of which 20 were crystallographically confirmed. X-ray data collection to ultra-high resolution and at physiological temperature enabled assessment of the conformational heterogeneity around the active site. Several crystallographic and docking fragment hits were validated for solution binding using three biophysical techniques (DSF, HTRF, ITC). Overall, the 234 fragment structures presented explore a wide range of chemotypes and provide starting points for development of potent SARS-CoV-2 macrodomain inhibitors.
452

Evolution of enhanced innate immune evasion by the SARS-CoV-2 B.1.1.7 UK variant

Lucy Thorne et al.Oct 11, 2023
+30
A
M
L
Abstract Emergence of SARS-CoV-2 variants, including the globally successful B.1.1.7 lineage, suggests viral adaptations to host selective pressures resulting in more efficient transmission. Although much effort has focused on Spike adaptation for viral entry and adaptive immune escape, B.1.1.7 mutations outside Spike likely contribute to enhance transmission. Here we used unbiased abundance proteomics, phosphoproteomics, mRNA sequencing and viral replication assays to show that B.1.1.7 isolates more effectively suppress host innate immune responses in airway epithelial cells. We found that B.1.1.7 isolates have dramatically increased subgenomic RNA and protein levels of Orf9b and Orf6, both known innate immune antagonists. Expression of Orf9b alone suppressed the innate immune response through interaction with TOM70, a mitochondrial protein required for RNA sensing adaptor MAVS activation, and Orf9b binding and activity was regulated via phosphorylation. We conclude that B.1.1.7 has evolved beyond the Spike coding region to more effectively antagonise host innate immune responses through upregulation of specific subgenomic RNA synthesis and increased protein expression of key innate immune antagonists. We propose that more effective innate immune antagonism increases the likelihood of successful B.1.1.7 transmission, and may increase in vivo replication and duration of infection.
0

Structural dynamics of the active HER4 and HER2/HER4 complexes is finely tuned by different growth factors and glycosylation

Raphael Trenker et al.Oct 6, 2023
+2
T
D
R
Human Epidermal growth factor Receptor 4 (HER4) carries out essential functions in the development and maintenance of the cardiovascular and nervous systems. HER4 activation is regulated by a diverse group of extracellular ligands including the neuregulin (NRG) family and betacellulin (BTC), which promote HER4 homodimerization or heterodimerization with other HER receptors. Important cardiovascular functions of HER4 are exerted via heterodimerization with its close homolog and orphan receptor, HER2. To date structural insights into ligand-mediated HER4 activation have been limited to crystallographic studies of HER4 ectodomain homodimers in complex with NRG1b. Here we report cryo-EM structures of near full-length HER2/HER4 heterodimers and full-length HER4 homodimers bound to NRG1b and BTC. We show that the structures of the heterodimers bound to either ligand are nearly identical and that in both cases the HER2/HER4 heterodimer interface is less dynamic than those observed in structures of HER2/EGFR and HER2/HER3 heterodimers. In contrast, structures of full-length HER4 homodimers bound to NRG1b and BTC display more large-scale dynamics mirroring states previously reported for EGFR homodimers. Our structures also reveal the presence of multiple glycan modifications within HER4 ectodomains, modeled for the first time in HER receptors, that distinctively contribute to the stabilization of HER4 homodimer interfaces over those of HER2/HER4 heterodimers.
23

CNPY4 inhibits the Hedgehog pathway by modulating membrane sterol lipids

Megan Lo et al.Oct 24, 2023
+5
M
A
M
Introductory paragraph The Hedgehog (HH) pathway is critical for development and adult tissue homeostasis 1 . Aberrant HH signaling can cause congenital malformations, such as digit anomalies and holoprosencephaly 2 , and other diseases, including cancer 3 . Signal transduction is initiated by HH ligand binding to the Patched 1 (PTCH1) receptor on primary cilia, thereby releasing inhibition of Smoothened (SMO), a HH pathway activator 4 . Although cholesterol and several oxysterol lipids, which are enriched in the ciliary membrane, play a crucial role in HH activation 4,5 , the molecular mechanisms governing the regulation of these lipid molecules remain unresolved. Here, we identify Canopy 4 (CNPY4), a Saposin-like protein, as a regulator of the HH pathway that controls membrane sterol lipid levels. Cnpy4 −/− embryos exhibit multiple defects consistent with HH signaling perturbations, most notably changes in digit number. Knockdown of Cnpy4 hyperactivates the HH pathway at the level of SMO in vitro , and elevates membrane levels of accessible sterol lipids such as cholesterol, an endogenous ligand involved in SMO activation 6 . Thus, our data demonstrate that CNPY4 is a negative regulator that fine-tunes the initial steps of HH signal transduction, revealing a previously undescribed facet of HH pathway regulation that operates through control of membrane composition.
Load More