VC
Vanessa Cowton
Author with expertise in Coronavirus Disease 2019 Research
University of Glasgow, MRC University of Glasgow Centre for Virus Research, Medical Research Council
+ 6 more
Achievements
Open Access Advocate
Cited Author
Key Stats
Upvotes received:
0
Publications:
8
(88% Open Access)
Cited by:
33
h-index:
14
/
i10-index:
19
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
65

The P681H mutation in the Spike glycoprotein confers Type I interferon resistance in the SARS-CoV-2 alpha (B.1.1.7) variant

María Lista et al.Oct 24, 2023
+14
H
H
M
SUMMARY Variants of concern (VOCs) of severe acute respiratory syndrome coronavirus type-2 (SARS-CoV-2) threaten the global response to the COVID-19 pandemic. The alpha (B.1.1.7) variant appeared in the UK became dominant in Europe and North America in early 2021. The Spike glycoprotein of alpha has acquired a number mutations including the P681H mutation in the polybasic cleavage site that has been suggested to enhance Spike cleavage. Here, we show that the alpha Spike protein confers a level of resistance to the effects of interferon-β (IFNβ) in lung epithelial cells. This correlates with resistance to restriction mediated by interferon-induced transmembrane protein-2 (IFITM2) and a pronounced infection enhancement by IFITM3. Furthermore, the P681H mutation is necessary for comparative resistance to IFNβ in a molecularly cloned SARS-CoV-2 encoding alpha Spike. Overall, we suggest that in addition to adaptive immune escape, mutations associated with VOCs also confer replication advantage through adaptation to resist innate immunity.
65
Citation22
0
Save
0

Evolution of enhanced innate immune suppression by SARS-CoV-2 Omicron subvariants

Ann‐Kathrin Reuschl et al.Sep 19, 2023
+13
M
L
A
SARS-CoV-2 adaptation to humans is evidenced by the emergence of variants of concern (VOCs) with distinct genotypes and phenotypes that facilitate immune escape and enhance transmission frequency. Most recently Omicron subvariants have emerged with heavily mutated spike proteins which facilitate re-infection of immune populations through extensive antibody escape driving replacement of previously-dominant VOCs Alpha and Delta. Interestingly, Omicron is the first VOC to produce distinct subvariants. Here, we demonstrate that later Omicron subvariants, particularly BA.4 and BA.5, have evolved an enhanced capacity to suppress human innate immunity when compared to earliest subvariants BA.1 and BA.2. We find that, like previously dominant VOCs, later Omicron subvariants tend to increase expression of viral innate immune antagonists Orf6 and nucleocapsid. We show Orf6 to be a key contributor to enhanced innate immune suppression during epithelial replication by BA.5 and Alpha, reducing innate immune signaling through IRF3 and STAT1. Convergent VOC evolution of enhanced innate immune antagonist expression suggests common pathways of adaptation to humans and links VOC, and in particular Omicron subvariant, dominance to improved innate immune evasion.
3k

Phenotyping the virulence of SARS-CoV-2 variants in hamsters by digital pathology and machine learning

Gavin Meehan et al.Oct 24, 2023
+18
J
V
G
ABSTRACT SARS-CoV-2 has continued to evolve throughout the COVID-19 pandemic, giving rise to multiple variants of concern (VOCs) with different biological properties. As the pandemic progresses, it will be essential to test in near real time the potential of any new emerging variant to cause severe disease. BA.1 (Omicron) was shown to be attenuated compared to the previous VOCs like Delta, but it is possible that newly emerging variants may regain a virulent phenotype. Hamsters have been proven to be an exceedingly good model for SARS-CoV-2 pathogenesis. Here, we aimed to develop robust quantitative pipelines to assess the virulence of SARS-CoV-2 variants in hamsters. We used various approaches including RNAseq, RNA in situ hybridization, immunohistochemistry, and digital pathology, including software assisted whole section imaging and downstream automatic analyses enhanced by machine learning, to develop methods to assess and quantify virus-induced pulmonary lesions in an unbiased manner. Initially, we used Delta and Omicron to develop our experimental pipelines. We then assessed the virulence of recent Omicron sub-lineages including BA.5, XBB, BQ.1.18, BA.2 and BA.2.75. We show that in experimentally infected hamsters, accurate quantification of alveolar epithelial hyperplasia and macrophage infiltrates represent robust markers for assessing the extent of virus-induced pulmonary pathology, and hence virus virulence. In addition, using these pipelines, we could reveal how some Omicron sub-lineages (e.g., BA.2.75) have regained virulence compared to the original BA.1. Finally, to maximise the utility of the digital pathology pipelines reported in our study, we developed an online repository containing representative whole organ histopathology sections that can be visualised at variable magnifications ( https://covid-atlas.cvr.gla.ac.uk ). Overall, this pipeline can provide unbiased and invaluable data for rapidly assessing newly emerging variants and their potential to cause severe disease.
3k
Citation1
0
Save
9

The P681H mutation in the Spike glycoprotein escapes IFITM restriction and is necessary for type I interferon resistance in the SARS-CoV-2 alpha variant

María Lista et al.Oct 24, 2023
+14
H
H
M
ABSTRACT The appearance of new dominant variants of concern (VOCs) of severe acute respiratory syndrome coronavirus type 2 (SARS-CoV-2) threatens the global response to the COVID-19 pandemic. Of these, the alpha variant (also known as B.1.1.7) that appeared initially in the UK became the dominant variant in much of Europe and North America in the first half of 2021. The Spike (S) glycoprotein of alpha acquired seven mutations and two deletions compared to the ancestral virus, including the P681H mutation in the polybasic cleavage site that has been suggested to enhance S cleavage. Here, we show that the alpha S protein confers a level of resistance to the effects of interferon-β (IFNβ) in human lung epithelial cells. This correlates with resistance to an entry restriction mediated by interferon-induced transmembrane protein 2 (IFITM2) and a pronounced infection enhancement by IFITM3. Furthermore, the P681H mutation is essential for resistance to IFNβ and context-dependent resistance to IFITMs in the alpha S. However, while this appears to confer changes in sensitivity to endosomal protease inhibition consistent with enhanced cell-surface entry, its reversion does not reduce cleaved S incorporation into particles, indicating a role downstream of furin cleavage. Overall, we suggest that, in addition to adaptive immune escape, mutations associated with VOCs may well also confer replication and/or transmission advantage through adaptation to resist innate immune mechanisms. IMPORTANCE The emergence of Variants of Concern of SARS-CoV-2 has been a key challenge in the global response to the COVID-19 pandemic. Accumulating evidence suggests VOCs are being selected to evade the human immune response, with much interest focussed on mutations in the Spike protein that escape from neutralizing antibody responses. However, resistance to the innate immune response is essential for efficient viral replication and transmission. Here we show that the alpha (B.1.1.7) VOC of SARS-CoV-2 is substantially more resistant to type-1 interferons than the parental Wuhan-like virus. This correlates with resistance to the antiviral protein IFITM2, and enhancement by its paralogue IFITM3, that block virus entry into target cells. The key determinant of this is a proline to histidine change at position 681 in S adjacent to the furin-cleavage site that we have shown previously modulates IFITM2 sensitivity. Unlike other VOCs, in the context of the alpha spike, P681H modulates cell entry pathways of SARS-CoV-2, further reducing its dependence one endosomal proteases. Reversion of position 681 to a proline in viruses bearing the alpha spike is sufficient to restore interferon and IFITM2 sensitivity without reducing furin-mediated spike cleavage, suggesting post cleavage conformational changes in S are changing the viral entry pathway and therefore sensitivity to interferon. These data highlight the dynamic nature of the SARS CoV-2 S as it adapts to both innate and adaptive immunity in the human population.
9
Paper
Citation1
0
Save
0

Interferon lambda 4 impacts broadly on hepatitis C virus diversity.

M Ansari et al.May 7, 2020
+22
C
E
M
Type III interferons (IFN-λ) are part of the innate immune response to hepatitis C virus (HCV) infection however the specific role of IFN-λ4 and the nature of the viral adaption to this pressure have not been defined. Here we use paired genome-wide human and viral genetic data in 485 patients infected with HCV genotype 3a to explore the role of IFN-λ4 on HCV evolution during chronic infection. We show that genetic variations within the host IFNL4 locus have a broad and systematic impact on HCV amino acid diversity. We also demonstrate that this impact is larger in patients producing a more active form of IFN-λ4 protein compared to the less active form. A similar observation was noted for viral load. We conclude that IFN-λ4 protein is a likely causal agent driving widespread HCV amino acid changes and associated with viral load and possibly other clinical and biological outcomes of HCV infection.
200

Global landscape of the host response to SARS-CoV-2 variants reveals viral evolutionary trajectories

Mehdi Bouhaddou et al.Oct 24, 2023
+74
B
A
M
ABSTRACT A series of SARS-CoV-2 variants of concern (VOCs) have evolved in humans during the COVID-19 pandemic—Alpha, Beta, Gamma, Delta, and Omicron. Here, we used global proteomic and genomic analyses during infection to understand the molecular responses driving VOC evolution. We discovered VOC-specific differences in viral RNA and protein expression levels, including for N, Orf6, and Orf9b, and pinpointed several viral mutations responsible. An analysis of the host response to VOC infection and comprehensive interrogation of altered virus-host protein-protein interactions revealed conserved and divergent regulation of biological pathways. For example, regulation of host translation was highly conserved, consistent with suppression of VOC replication in mice using the translation inhibitor plitidepsin. Conversely, modulation of the host inflammatory response was most divergent, where we found Alpha and Beta, but not Omicron BA.1, antagonized interferon stimulated genes (ISGs), a phenotype that correlated with differing levels of Orf6. Additionally, Delta more strongly upregulated proinflammatory genes compared to other VOCs. Systematic comparison of Omicron subvariants revealed BA.5 to have evolved enhanced ISG and proinflammatory gene suppression that similarly correlated with Orf6 expression, effects not seen in BA.4 due to a mutation that disrupts the Orf6-nuclear pore interaction. Our findings describe how VOCs have evolved to fine-tune viral protein expression and protein-protein interactions to evade both innate and adaptive immune responses, offering a likely explanation for increased transmission in humans. One sentence summary Systematic proteomic and genomic analyses of SARS-CoV-2 variants of concern reveal how variant-specific mutations alter viral gene expression, virus-host protein complexes, and the host response to infection with applications to therapy and future pandemic preparedness.
1

Mutations that adapt SARS-CoV-2 to mustelid hosts do not increase fitness in the human airway

Jie Zhou et al.Oct 24, 2023
+26
J
T
J
Abstract SARS-CoV-2 has a broad mammalian species tropism infecting humans, cats, dogs and farmed mink. Since the start of the 2019 pandemic several reverse zoonotic outbreaks of SARS-CoV-2 have occurred in mink, one of which reinfected humans and caused a cluster of infections in Denmark. Here we investigate the molecular basis of mink and ferret adaptation and demonstrate the spike mutations Y453F, F486L, and N501T all specifically adapt SARS-CoV-2 to use mustelid ACE2. Furthermore, we risk assess these mutations and conclude mink-adapted viruses are unlikely to pose an increased threat to humans, as Y453F attenuates the virus replication in human cells and all 3 mink-adaptations have minimal antigenic impact. Finally, we show that certain SARS-CoV-2 variants emerging from circulation in humans may naturally have a greater propensity to infect mustelid hosts and therefore these species should continue to be surveyed for reverse zoonotic infections.
1
0
Save
3

The SARS-CoV-2 variant, Omicron, shows rapid replication in human primary nasal epithelial cultures and efficiently uses the endosomal route of entry

Thomas Peacock et al.May 17, 2022
+17
J
J
T
Abstract At the end of 2021 a new SARS-CoV-2 variant, Omicron, emerged and quickly spread across the world. It has been demonstrated that Omicron’s high number of Spike mutations lead to partial immune evasion from even polyclonal antibody responses, allowing frequent re-infection and vaccine breakthroughs. However, it seems unlikely these antigenic differences alone explain its rapid growth; here we show Omicron replicates rapidly in human primary airway cultures, more so even than the previously dominant variant of concern, Delta. Omicron Spike continues to use human ACE2 as its primary receptor, to which it binds more strongly than other variants. Omicron Spike mediates enhanced entry into cells expressing several different animal ACE2s, including various domestic avian species, horseshoe bats and mice suggesting it has an increased propensity for reverse zoonosis and is more likely than previous variants to establish an animal reservoir of SARS-CoV-2. Unlike other SARS-CoV-2 variants, however, Omicron Spike has a diminished ability to induce syncytia formation. Furthermore, Omicron is capable of efficiently entering cells in a TMPRSS2-independent manner, via the endosomal route. We posit this enables Omicron to infect a greater number of cells in the respiratory epithelium, allowing it to be more infectious at lower exposure doses, and resulting in enhanced intrinsic transmissibility.