PL
Peter Li
Author with expertise in Cryo-Electron Microscopy Techniques
Achievements
Cited Author
Key Stats
Upvotes received:
0
Publications:
13
(46% Open Access)
Cited by:
374
h-index:
21
/
i10-index:
27
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

High-precision automated reconstruction of neurons with flood-filling networks

Michał Januszewski et al.Jul 11, 2018
+7
P
J
M
Reconstruction of neural circuits from volume electron microscopy data requires the tracing of cells in their entirety, including all their neurites. Automated approaches have been developed for tracing, but their error rates are too high to generate reliable circuit diagrams without extensive human proofreading. We present flood-filling networks, a method for automated segmentation that, similar to most previous efforts, uses convolutional neural networks, but contains in addition a recurrent pathway that allows the iterative optimization and extension of individual neuronal processes. We used flood-filling networks to trace neurons in a dataset obtained by serial block-face electron microscopy of a zebra finch brain. Using our method, we achieved a mean error-free neurite path length of 1.1 mm, and we observed only four mergers in a test set with a path length of 97 mm. The performance of flood-filling networks was an order of magnitude better than that of previous approaches applied to this dataset, although with substantially increased computational costs.
0

A Connectome and Analysis of the AdultDrosophilaCentral Brain

Louis Scheffer et al.Apr 9, 2020
+104
C
M
L
Abstract The neural circuits responsible for animal behavior remain largely unknown. We summarize new methods and present the circuitry of a large fraction of the brain of the fruit fly Drosophila melanogaster. Improved methods include new procedures to prepare, image, align, segment, find synapses in, and proofread such large data sets. We define cell types, refine computational compartments, and provide an exhaustive atlas of cell examples and types, many of them novel. We provide detailed circuits consisting of neurons and their chemical synapses for most of the central brain. We make the data public and simplify access, reducing the effort needed to answer circuit questions, and provide procedures linking the neurons defined by our analysis with genetic reagents. Biologically, we examine distributions of connection strengths, neural motifs on different scales, electrical consequences of compartmentalization, and evidence that maximizing packing density is an important criterion in the evolution of the fly’s brain.
0
Citation35
0
Save
1

Multi-Layered Maps of Neuropil with Segmentation-Guided Contrastive Learning

Sven Dorkenwald et al.Mar 30, 2022
+8
M
P
S
Abstract Maps of the nervous system that identify individual cells along with their type, subcellular components, and connectivity have the potential to reveal fundamental organizational principles of neural circuits. Volumetric nanometer-resolution imaging of brain tissue provides the raw data needed to build such maps, but inferring all the relevant cellular and subcellular annotation layers is challenging. Here, we present Segmentation-Guided Contrastive Learning of Representations (“SegCLR”), a self-supervised machine learning technique that produces highly informative representations of cells directly from 3d electron microscope imagery and segmentations. When applied to volumes of human and mouse cerebral cortex, SegCLR enabled the classification of cellular subcompartments (axon, dendrite, soma, astrocytic process) with 4,000-fold less labeled data compared to fully supervised approaches. Surprisingly, SegCLR also enabled inference of cell types (neurons, glia, and subtypes of each) from fragments with lengths as small as 10 micrometers, a task that can be difficult for humans to perform and whose feasibility greatly enhances the utility of imaging portions of brains in which many neuron fragments terminate at a volume boundary. These predictions were further augmented via Gaussian process uncertainty estimation to enable analyses restricted to high confidence subsets of the data. Finally, SegCLR enabled detailed exploration of layer-5 pyramidal cell subtypes and automated large-scale statistical analysis of upstream and downstream synaptic partners in mouse visual cortex.
0

Decomposition of retinal ganglion cell electrical images for cell type and functional inference

Eric Wu et al.Jan 1, 2023
+12
N
C
E
Identifying neuronal cell types and their biophysical properties based on their extracellular electrical features is a major challenge for experimental neuroscience and the development of high-resolution brain-machine interfaces. One example is identification of retinal ganglion cell (RGC) types and their visual response properties, which is fundamental for developing future electronic implants that can restore vision. The electrical image (EI) of a RGC, or the mean spatio-temporal voltage footprint of its recorded spikes on a high-density electrode array, contains substantial information about its anatomical, morphological, and functional properties. However, the analysis of these properties is complex because of the high-dimensional nature of the EI. We present a novel optimization-based algorithm to decompose electrical image into a low-dimensional, biophysically-based representation: the temporally-shifted superposition of three learned basis waveforms corresponding to spike waveforms produced in the somatic, dendritic and axonal cellular compartments. Large-scale multi-electrode recordings from the macaque retina were used to test the effectiveness of the decomposition. The decomposition accurately localized the somatic and dendritic compartments of the cell. The imputed dendritic fields of RGCs correctly predicted the location and shape of their visual receptive fields. The inferred waveform amplitudes and shapes accurately identified the four major primate RGC types (ON and OFF midget and parasol cells), a substantial advance. Together, these findings may contribute to more accurate inference of RGC types and their original light responses in the degenerated retina, with possible implications for other electrical imaging applications.
0

A connectomic study of a petascale fragment of human cerebral cortex

Alexander Shapson-Coe et al.May 30, 2021
+26
D
M
A
Abstract We acquired a rapidly preserved human surgical sample from the temporal lobe of the cerebral cortex. We stained a 1 mm 3 volume with heavy metals, embedded it in resin, cut more than 5000 slices at ∼30 nm and imaged these sections using a high-speed multibeam scanning electron microscope. We used computational methods to render the three-dimensional structure containing 57,216 cells, hundreds of millions of neurites and 133.7 million synaptic connections. The 1.4 petabyte electron microscopy volume, the segmented cells, cell parts, blood vessels, myelin, inhibitory and excitatory synapses, and 104 manually proofread cells are available to peruse online . Many interesting and unusual features were evident in this dataset. Glia outnumbered neurons 2:1 and oligodendrocytes were the most common cell type in the volume. Excitatory spiny neurons comprised 69% of the neuronal population, and excitatory synapses also were in the majority (76%). The synaptic drive onto spiny neurons was biased more strongly toward excitation (70%) than was the case for inhibitory interneurons (48%). Despite incompleteness of the automated segmentation caused by split and merge errors, we could automatically generate (and then validate) connections between most of the excitatory and inhibitory neuron types both within and between layers. In studying these neurons we found that deep layer excitatory cell types can be classified into new subsets, based on structural and connectivity differences, and that chandelier interneurons not only innervate excitatory neuron initial segments as previously described, but also each other’s initial segments. Furthermore, among the thousands of weak connections established on each neuron, there exist rarer highly powerful axonal inputs that establish multi-synaptic contacts (up to ∼20 synapses) with target neurons. Our analysis indicates that these strong inputs are specific, and allow small numbers of axons to have an outsized role in the activity of some of their postsynaptic partners.
1

Multiplexed volumetric CLEM enabled by antibody derivatives provides new insights into the cytology of the mouse cerebellar cortex

Xiaomeng Han et al.May 21, 2023
+16
P
X
X
Abstract Mapping neuronal networks that underlie behavior has become a central focus in neuroscience. While serial section electron microscopy (ssEM) can reveal the fine structure of neuronal networks (connectomics), it does not provide the molecular information that helps identify cell types or their functional properties. Volumetric correlated light and electron microscopy (vCLEM) combines ssEM and volumetric fluorescence microscopy to incorporate molecular labeling into ssEM datasets. We developed an approach that uses small fluorescent single-chain variable fragment (scFv) immuno-probes to perform multiplexed detergent-free immuno-labeling and ssEM on the same samples. We generated eight such fluorescent scFvs that targeted useful markers for brain studies (green fluorescent protein, glial fibrillary acidic protein, calbindin, parvalbumin, voltage-gated potassium channel subfamily A member 2, vesicular glutamate transporter 1, postsynaptic density protein 95, and neuropeptide Y). To test the vCLEM approach, six different fluorescent probes were imaged in a sample of the cortex of a cerebellar lobule (Crus 1), using confocal microscopy with spectral unmixing, followed by ssEM imaging of the same sample. The results show excellent ultrastructure with superimposition of the multiple fluorescence channels. Using this approach we could document a poorly described cell type in the cerebellum, two types of mossy fiber terminals, and the subcellular localization of one type of ion channel. Because scFvs can be derived from existing monoclonal antibodies, hundreds of such probes can be generated to enable molecular overlays for connectomic studies.
0

Automated Reconstruction of a Serial-Section EM Drosophila Brain with Flood-Filling Networks and Local Realignment

Peter Li et al.Apr 11, 2019
+13
M
L
P
Reconstruction of neural circuitry at single-synapse resolution is an attractive target for improving understanding of the nervous system in health and disease. Serial section transmission electron microscopy (ssTEM) is among the most prolific imaging methods employed in pursuit of such reconstructions. We demonstrate how Flood-Filling Networks (FFNs) can be used to computationally segment a forty-teravoxel whole-brain Drosophila ssTEM volume. To compensate for data irregularities and imperfect global alignment, FFNs were combined with procedures that locally re-align serial sections as well as dynamically adjust and synthesize image content. The proposed approach produced a largely merger-free segmentation of the entire ssTEM Drosophila brain, which we make freely available. As compared to manual tracing using an efficient skeletonization strategy, the segmentation enabled circuit reconstruction and analysis workflows that were an order of magnitude faster.
0

Structured sampling of olfactory input by the fly mushroom body

Zhihao Zheng et al.Apr 18, 2020
+12
C
F
Z
Associative memory formation and recall in the adult fruit fly Drosophila melanogaster is subserved by the mushroom body (MB). Upon arrival in the MB, sensory information undergoes a profound transformation. Olfactory projection neurons (PNs), the main MB input, exhibit broadly tuned, sustained, and stereotyped responses to odorants; in contrast, their postsynaptic targets in the MB, the Kenyon cells (KCs), are nonstereotyped, narrowly tuned, and only briefly responsive to odorants. Theory and experiment have suggested that this transformation is implemented by random connectivity between KCs and PNs. However, this hypothesis has been challenging to test, given the difficulty of mapping synaptic connections between large numbers of neurons to achieve a unified view of neuronal network structure. Here we used a recent whole-brain electron microscopy (EM) volume of the adult fruit fly to map large numbers of PN- to-KC connections at synaptic resolution. Comparison of the observed connectome to precisely defined null models revealed unexpected network structure, in which a subset of food-responsive PN types converge on individual downstream KCs more frequently than expected. The connectivity bias is consistent with the neurogeometry: axons of the overconvergent PNs tend to arborize near one another in the MB main calyx, making local KC dendrites more likely to receive input from those types. Computational modeling of the observed PN-to-KC network showed that input from the overconvergent PN types is better discriminated than input from other types. These results suggest an ‘associative fovea’ for olfaction, in that the MB is wired to better discriminate more frequently occurring and ethologically relevant combinations of food-related odors.### Competing Interest StatementThe authors have declared no competing interest.
0

High-Precision Automated Reconstruction of Neurons with Flood-filling Networks

Michał Januszewski et al.Oct 9, 2017
+7
P
J
M
Reconstruction of neural circuits from volume electron microscopy data requires the tracing of complete cells including all their neurites. Automated approaches have been developed to perform the tracing, but without costly human proofreading their error rates are too high to obtain reliable circuit diagrams. We present a method for automated segmentation that, like the majority of previous efforts, employs convolutional neural networks, but contains in addition a recurrent pathway that allows the iterative optimization and extension of the reconstructed shape of individual neural processes. We used this technique, which we call flood-filling networks, to trace neurons in a data set obtained by serial block-face electron microscopy from a male zebra finch brain. Our method achieved a mean error-free neurite path length of 1.1 mm, an order of magnitude better than previously published approaches applied to the same dataset. Only 4 mergers were observed in a neurite test set of 97 mm path length.
0

A large-scale volumetric correlated light and electron microscopy study localizes Alzheimer’s disease-related molecules in the hippocampus

Xiaomeng Han et al.Oct 26, 2023
+17
S
P
X
Connectomics is a nascent neuroscience field to map and analyze neuronal networks. It provides a new way to investigate abnormalities in brain tissue, including in models of Alzheimer's disease (AD). This age-related disease is associated with alterations in amyloid-β (Aβ) and phosphorylated tau (pTau). These alterations correlate with AD's clinical manifestations, but causal links remain unclear. Therefore, studying these molecular alterations within the context of the local neuronal and glial milieu may provide insight into disease mechanisms. Volume electron microscopy (vEM) is an ideal tool for performing connectomics studies at the ultrastructural level, but localizing specific biomolecules within large-volume vEM data has been challenging. Here we report a volumetric correlated light and electron microscopy (vCLEM) approach using fluorescent nanobodies as immuno-probes to localize Alzheimer's disease-related molecules in a large vEM volume. Three molecules (pTau, Aβ, and a marker for activated microglia (CD11b)) were labeled without the need for detergents by three nanobody probes in a sample of the hippocampus of the 3xTg Alzheimer's disease model mouse. Confocal microscopy followed by vEM imaging of the same sample allowed for registration of the location of the molecules within the volume. This dataset revealed several ultrastructural abnormalities regarding the localizations of Aβ and pTau in novel locations. For example, two pTau-positive post-synaptic spine-like protrusions innervated by axon terminals were found projecting from the axon initial segment of a pyramidal cell. Three pyramidal neurons with intracellular Aβ or pTau were 3D reconstructed. Automatic synapse detection, which is necessary for connectomics analysis, revealed the changes in density and volume of synapses at different distances from an Aβ plaque. This vCLEM approach is useful to uncover molecular alterations within large-scale volume electron microscopy data, opening a new connectomics pathway to study Alzheimer's disease and other types of dementia.
Load More