HS
Hannah Sharpe
Author with expertise in Coronavirus Disease 2019 Research
Achievements
Cited Author
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
10
(90% Open Access)
Cited by:
1,756
h-index:
21
/
i10-index:
26
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

ChAdOx1 nCoV-19 vaccine prevents SARS-CoV-2 pneumonia in rhesus macaques

Neeltje Doremalen et al.Jul 30, 2020
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) emerged in December 20191,2 and is responsible for the coronavirus disease 2019 (COVID-19) pandemic3. Vaccines are an essential countermeasure and are urgently needed to control the pandemic4. Here we show that the adenovirus-vector-based vaccine ChAdOx1 nCoV-19, which encodes the spike protein of SARS-CoV-2, is immunogenic in mice and elicites a robust humoral and cell-mediated response. This response was predominantly mediated by type-1 T helper cells, as demonstrated by the profiling of the IgG subclass and the expression of cytokines. Vaccination with ChAdOx1 nCoV-19 (using either a prime-only or a prime-boost regimen) induced a balanced humoral and cellular immune response of type-1 and type-2 T helper cells in rhesus macaques. We observed a significantly reduced viral load in the bronchoalveolar lavage fluid and lower respiratory tract tissue of vaccinated rhesus macaques that were challenged with SARS-CoV-2 compared with control animals, and no pneumonia was observed in vaccinated SARS-CoV-2-infected animals. However, there was no difference in nasal shedding between vaccinated and control SARS-CoV-2-infected macaques. Notably, we found no evidence of immune-enhanced disease after viral challenge in vaccinated SARS-CoV-2-infected animals. The safety, immunogenicity and efficacy profiles of ChAdOx1 nCoV-19 against symptomatic PCR-positive COVID-19 disease will now be assessed in randomized controlled clinical trials in humans.
0

T cell and antibody responses induced by a single dose of ChAdOx1 nCoV-19 (AZD1222) vaccine in a phase 1/2 clinical trial

Katie Ewer et al.Dec 17, 2020
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the causative agent of Coronavirus Disease 2019 (COVID-19), has caused a global pandemic, and safe, effective vaccines are urgently needed1. Strong, Th1-skewed T cell responses can drive protective humoral and cell-mediated immune responses2 and might reduce the potential for disease enhancement3. Cytotoxic T cells clear virus-infected host cells and contribute to control of infection4. Studies of patients infected with SARS-CoV-2 have suggested a protective role for both humoral and cell-mediated immune responses in recovery from COVID-19 (refs. 5,6). ChAdOx1 nCoV-19 (AZD1222) is a candidate SARS-CoV-2 vaccine comprising a replication-deficient simian adenovirus expressing full-length SARS-CoV-2 spike protein. We recently reported preliminary safety and immunogenicity data from a phase 1/2 trial of the ChAdOx1 nCoV-19 vaccine (NCT04400838)7 given as either a one- or two-dose regimen. The vaccine was tolerated, with induction of neutralizing antibodies and antigen-specific T cells against the SARS-CoV-2 spike protein. Here we describe, in detail, exploratory analyses of the immune responses in adults, aged 18–55 years, up to 8 weeks after vaccination with a single dose of ChAdOx1 nCoV-19 in this trial, demonstrating an induction of a Th1-biased response characterized by interferon-γ and tumor necrosis factor-α cytokine secretion by CD4+ T cells and antibody production predominantly of IgG1 and IgG3 subclasses. CD8+ T cells, of monofunctional, polyfunctional and cytotoxic phenotypes, were also induced. Taken together, these results suggest a favorable immune profile induced by ChAdOx1 nCoV-19 vaccine, supporting the progression of this vaccine candidate to ongoing phase 2/3 trials to assess vaccine efficacy. A single dose of the ChAdOx1 nCoV-19 vaccine elicits antibodies and cytokine-producing T cells that might help control or prevent SARS-CoV-2 infection.
0

Potent immunogenicity and protective efficacy of a multi-pathogen vaccination targeting Ebola, Sudan, Marburg and Lassa viruse

Amy Flaxman et al.Jun 26, 2024
Viral haemorrhagic fevers (VHF) pose a significant threat to human health. In recent years, VHF outbreaks caused by Ebola, Marburg and Lassa viruses have caused substantial morbidity and mortality in West and Central Africa. In 2022, an Ebola disease outbreak in Uganda caused by Sudan virus resulted in 164 cases with 55 deaths. In 2023, a Marburg disease outbreak was confirmed in Equatorial Guinea and Tanzania resulting in over 49 confirmed or suspected cases; 41 of which were fatal. There are no clearly defined correlates of protection against these VHF, impeding targeted vaccine development. Any vaccine developed should therefore induce strong and preferably long-lasting humoral and cellular immunity against these viruses. Ideally this immunity should also cross-protect against viral variants, which are known to circulate in animal reservoirs and cause human disease. We have utilized two viral vectored vaccine platforms, an adenovirus (ChAdOx1) and Modified Vaccinia Ankara (MVA), to develop a multi-pathogen vaccine regime against three filoviruses (Ebola virus, Sudan virus, Marburg virus) and an arenavirus (Lassa virus). These platform technologies have consistently demonstrated the capability to induce robust cellular and humoral antigen-specific immunity in humans, most recently in the rollout of the licensed ChAdOx1-nCoV19/AZD1222. Here, we show that our multi-pathogen vaccines elicit strong cellular and humoral immunity, induce a diverse range of chemokines and cytokines, and most importantly, confers protection after lethal Ebola virus, Sudan virus and Marburg virus challenges in a small animal model.
0
Citation1
0
Save
0

Systemic prime mucosal boost significantly increases protective efficacy of bivalent RSV influenza viral vectored vaccine

Cameron Bissett et al.Jun 26, 2024
Abstract Although licensed vaccines against influenza virus have been successful in reducing pathogen-mediated disease, they have been less effective at preventing viral infection of the airways and current seasonal updates to influenza vaccines do not always successfully accommodate viral drift. Most licensed influenza and recently licensed RSV vaccines are administered via the intramuscular route. Alternative immunisation strategies, such as intranasal vaccinations, and “prime-pull” regimens, may deliver a more sterilising form of protection against respiratory viruses. A bivalent ChAdOx1-based vaccine (ChAdOx1-NP + M1-RSVF) encoding conserved nucleoprotein and matrix 1 proteins from influenza A virus and a modified pre-fusion stabilised RSV A F protein, was designed, developed and tested in preclinical animal models. The aim was to induce broad, cross-protective tissue-resident T cells against heterotypic influenza viruses and neutralising antibodies against RSV in the respiratory mucosa and systemically. When administered via an intramuscular prime-intranasal boost (IM-IN) regimen in mice, superior protection was generated against challenge with either RSV A, Influenza A H3N2 or H1N1. These results support further clinical development of a pan influenza & RSV vaccine administered in a prime-pull regimen.
0
Citation1
0
Save
0

ChAdOx1 nCoV-19 vaccination prevents SARS-CoV-2 pneumonia in rhesus macaques

Neeltje Doremalen et al.May 13, 2020
Severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) emerged in December 2019 and is responsible for the COVID-19 pandemic . Vaccines are an essential countermeasure urgently needed to control the pandemic . Here, we show that the adenovirus-vectored vaccine ChAdOx1 nCoV-19, encoding the spike protein of SARS-CoV-2, is immunogenic in mice, eliciting a robust humoral and cell-mediated response. This response was not Th2 dominated, as demonstrated by IgG subclass and cytokine expression profiling. A single vaccination with ChAdOx1 nCoV-19 induced a humoral and cellular immune response in rhesus macaques. We observed a significantly reduced viral load in bronchoalveolar lavage fluid and respiratory tract tissue of vaccinated animals challenged with SARS-CoV-2 compared with control animals, and no pneumonia was observed in vaccinated rhesus macaques. Importantly, no evidence of immune-enhanced disease following viral challenge in vaccinated animals was observed. ChAdOx1 nCoV-19 is currently under investigation in a phase I clinical trial. Safety, immunogenicity and efficacy against symptomatic PCR-positive COVID-19 disease will now be assessed in randomised controlled human clinical trials.
0

Potent immunogenicity and protective efficacy of a multi-pathogen vaccination targeting Zaire ebolavirus, Sudan ebolavirus, Marburg and Lassa viruses

Amy Flaxman et al.Nov 5, 2023
Abstract Viral haemorrhagic fevers (VHF) pose a significant threat to human health. In recent years, VHF outbreaks caused by Ebola, Marburg and Lassa viruses have caused substantial morbidity and mortality in West and Central Africa. In 2022, an Ebola disease outbreak in Uganda caused by Sudan ebolavirus resulted in 164 cases with 55 deaths. In February 2023, a Marburg disease outbreak was confirmed in Equatorial Guinea resulting in 15 confirmed and 23 suspected cases to date, with a second outbreak occurring concurrently in Tanzania. There are no clearly defined correlates of protection against these VHF, impeding targeted subunit vaccine development. Any vaccine developed should therefore induce strong and preferably long-lasting humoral and cellular immunity against these viruses. Ideally this immunity should also cross-protect against viral variants, which are known to circulate in animal reservoirs and cause human disease. We have utilized two viral vectored vaccine platforms, an adenovirus (ChAdOx1) and Modified Vaccinia Ankara (MVA), to develop a multi-pathogen vaccine regime against three filoviruses (Zaire ebolavirus, Sudan ebolavirus, Marburg) and an arenavirus (Lassa). These platform technologies have consistently demonstrated the capability to induce robust cellular and humoral antigen-specific immunity in humans, most recently in the rollout of the licensed ChAdOx1-nCoV19 /AZD1222. Here, we show that our multi-pathogen vaccines elicit strong cellular and humoral immunity, induce a diverse range of chemokines and cytokines, and most importantly, confers protection after lethal Zaire ebolavirus, Sudan ebolavirus and Marburg virus challenges in a small animal model. Author summary Outbreaks caused by Ebola and Lassa viruses have made headlines worldwide in recent years. Most recently, in 2023 a Marburg virus outbreak has claimed tens of lives with a high case fatality rate. As yet, no licensed vaccine exists to protect against this and other viral haemorrhagic fevers. An ideal vaccine would induce long-lasting immunity to, and protection from, viruses causing viral haemorrhagic fevers. We developed vaccines which can target multiple strains of Ebolavirus, the closely related Marburg virus and Lassa virus. The geographical ranges of these viruses overlap in West and Central Africa. We used viral vector platform technologies to generate these vaccines; ChAdOx1 has now been administered worldwide as part of COVID-19 vaccine rollouts, and MVA has been used in numerous clinical trials thus far. We found that both long lasting, antigen specific T cell and antibody responses were induced after vaccination. Lastly, we demonstrated these vaccines could protect small animals against challenge with Zaire ebolavirus, Sudan ebolavirus and Marburg virus.