XC
Xiaosu Chen
Author with expertise in Coronavirus Disease 2019 Research
Achievements
Cited Author
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
14
(93% Open Access)
Cited by:
1,505
h-index:
18
/
i10-index:
30
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

BA.2.12.1, BA.4 and BA.5 escape antibodies elicited by Omicron infection

Yunlong Cao et al.Jun 17, 2022
Abstract Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) Omicron sublineages BA.2.12.1, BA.4 and BA.5 exhibit higher transmissibility than the BA.2 lineage 1 . The receptor binding and immune-evasion capability of these recently emerged variants require immediate investigation. Here, coupled with structural comparisons of the spike proteins, we show that BA.2.12.1, BA.4 and BA.5 (BA.4 and BA.5 are hereafter referred collectively to as BA.4/BA.5) exhibit similar binding affinities to BA.2 for the angiotensin-converting enzyme 2 (ACE2) receptor. Of note, BA.2.12.1 and BA.4/BA.5 display increased evasion of neutralizing antibodies compared with BA.2 against plasma from triple-vaccinated individuals or from individuals who developed a BA.1 infection after vaccination. To delineate the underlying antibody-evasion mechanism, we determined the escape mutation profiles 2 , epitope distribution 3 and Omicron-neutralization efficiency of 1,640 neutralizing antibodies directed against the receptor-binding domain of the viral spike protein, including 614 antibodies isolated from people who had recovered from BA.1 infection. BA.1 infection after vaccination predominantly recalls humoral immune memory directed against ancestral (hereafter referred to as wild-type (WT)) SARS-CoV-2 spike protein. The resulting elicited antibodies could neutralize both WT SARS-CoV-2 and BA.1 and are enriched on epitopes on spike that do not bind ACE2. However, most of these cross-reactive neutralizing antibodies are evaded by spike mutants L452Q, L452R and F486V. BA.1 infection can also induce new clones of BA.1-specific antibodies that potently neutralize BA.1. Nevertheless, these neutralizing antibodies are largely evaded by BA.2 and BA.4/BA.5 owing to D405N and F486V mutations, and react weakly to pre-Omicron variants, exhibiting narrow neutralization breadths. The therapeutic neutralizing antibodies bebtelovimab 4 and cilgavimab 5 can effectively neutralize BA.2.12.1 and BA.4/BA.5, whereas the S371F, D405N and R408S mutations undermine most broadly sarbecovirus-neutralizing antibodies. Together, our results indicate that Omicron may evolve mutations to evade the humoral immunity elicited by BA.1 infection, suggesting that BA.1-derived vaccine boosters may not achieve broad-spectrum protection against new Omicron variants.
0
Citation1,051
0
Save
0

Imprinted SARS-CoV-2 humoral immunity induces convergent Omicron RBD evolution

Yunlong Cao et al.Dec 19, 2022
Continuous evolution of Omicron has led to a rapid and simultaneous emergence of numerous variants that display growth advantages over BA.5 (ref. 1). Despite their divergent evolutionary courses, mutations on their receptor-binding domain (RBD) converge on several hotspots. The driving force and destination of such sudden convergent evolution and its effect on humoral immunity remain unclear. Here we demonstrate that these convergent mutations can cause evasion of neutralizing antibody drugs and convalescent plasma, including those from BA.5 breakthrough infection, while maintaining sufficient ACE2-binding capability. BQ.1.1.10 (BQ.1.1 + Y144del), BA.4.6.3, XBB and CH.1.1 are the most antibody-evasive strains tested. To delineate the origin of the convergent evolution, we determined the escape mutation profiles and neutralization activity of monoclonal antibodies isolated from individuals who had BA.2 and BA.5 breakthrough infections2,3. Owing to humoral immune imprinting, BA.2 and especially BA.5 breakthrough infection reduced the diversity of the neutralizing antibody binding sites and increased proportions of non-neutralizing antibody clones, which, in turn, focused humoral immune pressure and promoted convergent evolution in the RBD. Moreover, we show that the convergent RBD mutations could be accurately inferred by deep mutational scanning profiles4,5, and the evolution trends of BA.2.75 and BA.5 subvariants could be well foreseen through constructed convergent pseudovirus mutants. These results suggest that current herd immunity and BA.5 vaccine boosters may not efficiently prevent the infection of Omicron convergent variants.
0
Citation443
-1
Save
77

Omicron BA.2 specifically evades broad sarbecovirus neutralizing antibodies

Yunlong Cao et al.Feb 7, 2022
Abstract Omicron sub-lineage BA.2 has rapidly surged globally, accounting for over 60% of recent SARS-CoV-2 infections. Newly acquired RBD mutations and high transmission advantage over BA.1 urge the investigation of BA.2’s immune evasion capability. Here, we show that BA.2 causes strong neutralization resistance, comparable to BA.1, in vaccinated individuals’ plasma. However, BA.2 displays more severe antibody evasion in BA.1 convalescents, and most prominently, in vaccinated SARS convalescents’ plasma, suggesting a substantial antigenicity difference between BA.2 and BA.1. To specify, we determined the escaping mutation profiles 1,2 of 714 SARS-CoV-2 RBD neutralizing antibodies, including 241 broad sarbecovirus neutralizing antibodies isolated from SARS convalescents, and measured their neutralization efficacy against BA.1, BA.1.1, BA.2. Importantly, BA.2 specifically induces large-scale escape of BA.1/BA.1.1-effective broad sarbecovirus neutralizing antibodies via novel mutations T376A, D405N, and R408S. These sites were highly conserved across sarbecoviruses, suggesting that Omicron BA.2 arose from immune pressure selection instead of zoonotic spillover. Moreover, BA.2 reduces the efficacy of S309 (Sotrovimab) 3,4 and broad sarbecovirus neutralizing antibodies targeting the similar epitope region, including BD55-5840. Structural comparisons of BD55-5840 in complexes with BA.1 and BA.2 spike suggest that BA.2 could hinder antibody binding through S371F-induced N343-glycan displacement. Intriguingly, the absence of G446S mutation in BA.2 enabled a proportion of 440-449 linear epitope targeting antibodies to retain neutralizing efficacy, including COV2-2130 (Cilgavimab) 5 . Together, we showed that BA.2 exhibits distinct antigenicity compared to BA.1 and provided a comprehensive profile of SARS-CoV-2 antibody escaping mutations. Our study offers critical insights into the humoral immune evading mechanism of current and future variants.
77
Citation10
0
Save
0

Humoral immunogenicity comparison of XBB and JN.1 in human infections

Fanchong Jian et al.Apr 22, 2024
The ongoing evolution of SARS-CoV-2 continues to challenge the global immune barrier established by infections and vaccine boosters. Recently, the emergence and dominance of the JN.1 lineage over XBB variants have prompted a reevaluation of current vaccine strategies. Despite the demonstrated effectiveness of XBB-based vaccines against JN.1, concerns persist regarding the durability of neutralizing antibody (NAb) responses against evolving JN.1 subvariants. In this study, we compared the humoral immunogenicity of XBB and JN.1 lineage infections in human subjects with diverse immune histories to understand the antigenic and immunogenic distinctions between these variants. Similar to observations in naive mice, priming with XBB and JN.1 in humans without prior SARS-CoV-2 exposure results in distinct NAb responses, exhibiting minimal cross-reactivity. Importantly, breakthrough infections (BTI) with the JN.1 lineage induce 5.9-fold higher neutralization titers against JN.1 compared to those induced by XBB BTI. We also observed notable immune evasion of recently emerged JN.1 sublineages, including JN.1+R346T+F456L, with KP.3 showing the most pronounced decrease in neutralization titers by both XBB and JN.1 BTI sera. These results underscore the challenge posed by the continuously evolving SARS-CoV-2 JN.1 and support the consideration of switching the focus of future SARS-CoV-2 vaccine updates to the JN.1 lineage.
1k

Repeated Omicron exposures override ancestral SARS-CoV-2 immune imprinting

Ayijiang Yisimayi et al.May 2, 2023
Abstract The continuous emergence of highly immune evasive SARS-CoV-2 variants, like XBB.1.5 1,2 and XBB.1.16 3,4 , highlights the need to update COVID-19 vaccine compositions. However, immune imprinting induced by wildtype (WT)-based vaccination would compromise the antibody response to Omicron-based boosters 5-9 . Vaccination strategies that can counter immune imprinting are critically needed. In this study, we investigated the degree and dynamics of immune imprinting in mouse models and human cohorts, especially focusing on the role of repeated Omicron stimulation. Our results show that in mice, the efficacy of single Omicron-boosting is heavily limited by immune imprinting, especially when using variants antigenically distinct from WT, like XBB, while the concerning situation could be largely mitigated by a second Omicron booster. Similarly, in humans, we found that repeated Omicron infections could also alleviate WT-vaccination-induced immune imprinting and generate high neutralizing titers against XBB.1.5 and XBB.1.16 in both plasma and nasal mucosa. By isolating 781 RBD-targeting mAbs from repeated Omicron infection cohorts, we revealed that double Omicron exposure alleviates immune imprinting by generating a large proportion of highly matured and potent Omicron-specific antibodies. Importantly, epitope characterization using deep mutational scanning (DMS) showed that these Omicron-specific antibodies target distinct RBD epitopes compared to WT-induced antibodies, and the bias towards non-neutralizing epitopes observed in single Omicron exposures due to imprinting was largely restored after repeated Omicron stimulation, together leading to a substantial neutralizing epitope shift. Based on the DMS profiles, we identified evolution hotspots of XBB.1.5 RBD and demonstrated the combinations of these mutations could further boost XBB.1.5’s immune-evasion capability while maintaining high ACE2 binding affinity. Our findings suggest the WT component should be abandoned when updating COVID-19 vaccine antigen compositions to XBB lineages, and those who haven’t been exposed to Omicron yet should receive two updated vaccine boosters.
135

Convergent evolution of SARS-CoV-2 XBB lineages on receptor-binding domain 455-456 enhances antibody evasion and ACE2 binding

Fanchong Jian et al.Aug 31, 2023
Summary Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) XBB lineages have achieved dominance worldwide and keep on evolving. Convergent evolution of XBB lineages on the receptor-binding domain (RBD) L455F and F456L is observed, resulting in variants like EG.5, FL.1.5.1, XBB.1.5.70, and HK.3. Here, we show that neutralizing antibody (NAb) evasion drives the convergent evolution of F456L, while the epistatic shift caused by F456L enables the subsequent convergence of L455F through ACE2 binding enhancement and further immune evasion. Specifically, L455F and F456L evades Class 1 NAbs, which could reduce the neutralization efficacy of XBB breakthrough infection (BTI) and reinfection convalescent plasma. Importantly, L455F single substitution significantly dampens receptor binding; however, the combination of L455F and F456L forms an adjacent residue flipping, which leads to enhanced NAbs resistance and ACE2 binding affinity. Our results indicate the evolution flexibility contributed by epistasis cannot be underestimated, and the evolution potential of SARS-CoV-2 RBD remains high. Highlights L455F and F456L enhance the resistance to Class 1 NAbs L455F and F456L lower neutralization of XBB BTI convalescent plasma L455F+F456L flipping significantly increases ACE2 binding affinity
110

Protective effect of plasma neutralization from prior SARS-CoV-2 Omicron infection against BA.5 subvariant symptomatic reinfection

Xiaosu Chen et al.Feb 19, 2023
Abstract From December 2022 to January 2023, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infections caused by BA.5 and BF.7 subvariants of B.1.1.529 (Omicron) swept across mainland China. It is crucial to estimate the protective effect of the neutralizing antibodies generated by such mass infections against the next potential SARS-CoV-2 reinfection wave, especially if driven by CH.1.1 or XBB.1.5. Previously, we recruited and continuously followed a cohort of individuals that experienced Omicron BA.1, BA.2, and BA.5 breakthrough infections, as well as a control cohort with no history of SARS-CoV-2 infection. In the previously uninfected cohort, the total symptomatic infection rate surveyed during the outbreak was 91.6%, while the symptomatic reinfection rate was 32.9%, 10.5%, and 2.8% among individuals with prior Omicron BA.1, BA.2 and BA.5 infection, respectively, with median intervals between infections of 335, 225 and 94 days. Pseudovirus neutralization assays were performed in plasma samples collected from previously Omicron BA.1-infected individuals approximately 3 months before the outbreak. Results indicate a robust correlation between the plasma neutralizing antibody titers and the protective effect against symptomatic reinfection. The geometric mean of the 50% neutralizing titers (NT 50 ) against D614G, BA.5, and BF.7 were 2.0, 2.5, and 2.3-fold higher in individuals without symptomatic reinfection than in those with symptomatic reinfection ( p < 0.01). Low plasma neutralizing antibody titer (below the geometric mean of NT 50 ) was associated with an enhanced cumulative risk of symptomatic reinfection, with a hazard ratio (HR) of 23.55 (95% CI: 9.23-60.06) against BF.7 subvariant. Importantly, neutralizing antibodies titers post one month after BF.7/BA.5 breakthrough infections against CH.1.1 and XBB.1.5 are similar to that against BF.7 from individuals with prior BA.1 infection while not experiencing a symptomatic BF.7/BA.5 reinfection (plasma collected 3 months before the outbreak), suggesting that the humoral immunity generated by the current BF.7/BA.5 breakthrough infection may provide protection against CH.1.1 and XBB.1.5 symptomatic reinfection wave for 4 months. Of note, the higher hACE2 binding of XBB.1.5 may reduce the protection period since the potential increase of infectivity.
0

Omicron-specific naive B cell maturation alleviates immune imprinting induced by SARS-CoV-2 inactivated vaccine

Ayijiang Yisimayi et al.May 14, 2024
Abstract SARS-CoV-2 ancestral strain-induced immune imprinting poses great challenges to vaccine updates. Studies showed that repeated Omicron exposures could override immune imprinting induced by inactivated vaccines but not mRNA vaccines, a disparity yet to be understood. Here, we analyzed the underlying mechanism of immune imprinting alleviation in inactivated vaccine (CoronaVac) cohorts. We observed in CoronaVac-vaccinated individuals who experienced BA.5/BF.7 breakthrough infection (BTI), the proportion of Omicron-specific memory B cells (MBCs) substantially increased after an extended period post-Omicron BTI, with their antibodies displaying enhanced somatic hypermutation and neutralizing potency. Consequently, the neutralizing antibody epitope distribution encoded by MBCs post-BA.5/BF.7 BTI after prolonged maturation closely mirrors that in BA.5/BF.7-infected unvaccinated individuals. Together, these results indicate the activation and expansion of Omicron-specific naïve B cells generated by first-time Omicron exposure helped to alleviate CoronaVac-induced immune imprinting, and the absence of this process should have caused the persistent immune imprinting seen in mRNA vaccine recipients. Highlights Longitudinal MBC profiling of CoronaVac-vaccinated individuals following BA.5 BTI Omicron-specific MBC proportion rises greatly after extended period post-BA.5 BTI Omicron-specific naive B cell maturation reduces ancestral strain immune imprinting
Load More