EP
Efthymia Papalexi
Author with expertise in Comprehensive Integration of Single-Cell Transcriptomic Data
New York Genome Center, New York University, Memorial Sloan Kettering Cancer Center
Achievements
Open Access Advocate
Cited Author
Key Stats
Upvotes received:
0
Publications:
7
(71% Open Access)
Cited by:
30
h-index:
14
/
i10-index:
16
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
1

High sensitivity single cell RNA sequencing with split pool barcoding

Vuong Tran et al.Oct 24, 2023
+14
S
E
V
Abstract Single cell RNA sequencing (scRNA-seq) has become a core tool for researchers to understand biology. As scRNA-seq has become more ubiquitous, many applications demand higher scalability and sensitivity. Split-pool combinatorial barcoding makes it possible to scale projects to hundreds of samples and millions of cells, overcoming limitations of previous droplet based technologies. However, there is still a need for increased sensitivity for both droplet and combinatorial barcoding based scRNA-seq technologies. To meet this need, here we introduce an updated combinatorial barcoding method for scRNA-seq with dramatically improved sensitivity. To assess performance, we profile a variety of sample types, including cell lines, human peripheral blood mononuclear cells (PBMCs), mouse brain nuclei, and mouse liver nuclei. When compared to the previously best performing approach, we find up to a 2.6-fold increase in unique transcripts detected per cell and up to a 1.8-fold increase in genes detected per cell. These improvements to transcript and gene detection increase the resolution of the resulting data, making it easier to distinguish cell types and states in heterogeneous samples. Split-pool combinatorial barcoding already enables scaling to millions of cells, the ability to perform scRNA-seq on previously fixed and frozen samples, and access to scRNA-seq without the need to purchase specialized lab equipment. Our hope is that by combining these previous advantages with the dramatic improvements to sensitivity presented here, we will elevate the standards and capabilities of scRNA-seq for the broader community.
1
Citation14
0
Save
114

Characterizing the molecular regulation of inhibitory immune checkpoints with multi-modal single-cell screens

Efthymia Papalexi et al.Oct 24, 2023
+7
A
E
E
ABSTRACT The expression of inhibitory immune checkpoint molecules such as PD-L1 is frequently observed in human cancers and can lead to the suppression of T cell-mediated immune responses. Here we apply ECCITE-seq, a technology which combines pooled CRISPR screens with single-cell mRNA and surface protein measurements, to explore the molecular networks that regulate PD-L1 expression. We also develop a computational framework, mixscape , that substantially improves the signal-to-noise ratio in single-cell perturbation screens by identifying and removing confounding sources of variation. Applying these tools, we identify and validate regulators of PD-L1 , and leverage our multi-modal data to identify both transcriptional and post-transcriptional modes of regulation. In particular, we discover that the kelch-like protein KEAP1 and the transcriptional activator NRF2 , mediate levels of PD-L1 upregulation after IFNγ stimulation. Our results identify a novel mechanism for the regulation of immune checkpoints and present a powerful analytical framework for the analysis of multi-modal single-cell perturbation screens.
114
Citation10
0
Save
0

Systematic reconstruction of molecular pathway signatures using scalable single-cell perturbation screens

Longda Jiang et al.May 26, 2024
+7
E
C
L
ABSTRACT Recent advancements in functional genomics have provided an unprecedented ability to measure diverse molecular modalities, but learning causal regulatory relationships from observational data remains challenging. Here, we leverage pooled genetic screens and single cell sequencing (i.e. Perturb-seq) to systematically identify the targets of signaling regulators in diverse biological contexts. We demonstrate how Perturb-seq is compatible with recent and commercially available advances in combinatorial indexing and next-generation sequencing, and perform more than 1,500 perturbations split across six cell lines and five biological signaling contexts. We introduce an improved computational framework (Mixscale) to address cellular variation in perturbation efficiency, alongside optimized statistical methods to learn differentially expressed gene lists and conserved molecular signatures. Finally, we demonstrate how our Perturb-seq derived gene lists can be used to precisely infer changes in signaling pathway activation for in-vivo and in-situ samples. Our work enhances our understanding of signaling regulators and their targets, and lays a computational framework towards the data-driven inference of an ‘atlas’ of perturbation signatures.
0
Citation3
0
Save
237

Efficient combinatorial targeting of RNA transcripts in single cells with Cas13 RNA Perturb-seq

Hans‐Hermann Wessels et al.Oct 24, 2023
+7
E
A
H
Pooled CRISPR screens coupled with single-cell RNA-sequencing have enabled systematic interrogation of gene function and regulatory networks. Here, we introduce Cas13 RNA Perturb-seq (CaRPool-seq) which leverages the RNA-targeting CRISPR/Cas13d system and enables efficient combinatorial perturbations alongside multimodal single-cell profiling. CaRPool-seq encodes multiple perturbations on a cleavable array which is associated with a detectable barcode sequence, allowing for the simultaneous targeting of multiple genes. We compared CaRPool-seq to existing Cas9-based methods, highlighting its unique strength to efficiently profile combinatorially perturbed cells. Finally, we apply CaRPool-seq to perform multiplexed combinatorial perturbations of myeloid differentiation regulators in an acute myeloid leukemia (AML) model system and identify extensive interactions between different chromatin regulators that can enhance or suppress AML differentiation phenotypes.
237
Paper
Citation3
0
Save
0

Comprehensive integration of single cell data

Tim Stuart et al.May 6, 2020
+6
P
A
T
Single cell transcriptomics (scRNA-seq) has transformed our ability to discover and annotate cell types and states, but deep biological understanding requires more than a taxonomic listing of clusters. As new methods arise to measure distinct cellular modalities, including high-dimensional immunophenotypes, chromatin accessibility, and spatial positioning, a key analytical challenge is to integrate these datasets into a harmonized atlas that can be used to better understand cellular identity and function. Here, we develop a computational strategy to "anchor" diverse datasets together, enabling us to integrate and compare single cell measurements not only across scRNA-seq technologies, but different modalities as well. After demonstrating substantial improvement over existing methods for data integration, we anchor scRNA-seq experiments with scATAC-seq datasets to explore chromatin differences in closely related interneuron subsets, and project single cell protein measurements onto a human bone marrow atlas to annotate and characterize lymphocyte populations. Lastly, we demonstrate how anchoring can harmonize in-situ gene expression and scRNA-seq datasets, allowing for the transcriptome-wide imputation of spatial gene expression patterns, and the identification of spatial relationships between mapped cell types in the visual cortex. Our work presents a strategy for comprehensive integration of single cell data, including the assembly of harmonized references, and the transfer of information across datasets. Availability: Installation instructions, documentation, and tutorials are available at: https://www.satijalab.org/seurat
347

Integrated analysis of multimodal single-cell data

Yuhan Hao et al.Oct 11, 2023
+22
E
S
Y
Abstract The simultaneous measurement of multiple modalities, known as multimodal analysis, represents an exciting frontier for single-cell genomics and necessitates new computational methods that can define cellular states based on multiple data types. Here, we introduce ‘weighted-nearest neighbor’ analysis, an unsupervised framework to learn the relative utility of each data type in each cell, enabling an integrative analysis of multiple modalities. We apply our procedure to a CITE-seq dataset of hundreds of thousands of human white blood cells alongside a panel of 228 antibodies to construct a multimodal reference atlas of the circulating immune system. We demonstrate that integrative analysis substantially improves our ability to resolve cell states and validate the presence of previously unreported lymphoid subpopulations. Moreover, we demonstrate how to leverage this reference to rapidly map new datasets, and to interpret immune responses to vaccination and COVID-19. Our approach represents a broadly applicable strategy to analyze single-cell multimodal datasets, including paired measurements of RNA and chromatin state, and to look beyond the transcriptome towards a unified and multimodal definition of cellular identity. Availability Installation instructions, documentation, tutorials, and CITE-seq datasets are available at http://www.satijalab.org/seurat
0

Expanding the CITE-seq tool-kit: Detection of proteins, transcriptomes, clonotypes and CRISPR perturbations with multiplexing, in a single assay

Eleni Mimitou et al.May 6, 2020
+11
A
A
E
Rapid technological progress in the recent years has allowed the high-throughput interrogation of different types of biomolecules from single cells. Combining several of these readouts into integrated multi-omic assays is essential to comprehensively understand and model cellular processes. Here, we report the development of Expanded CRISPR-compatible Cellular Indexing of Transcriptomes and Epitopes by sequencing (ECCITE-seq) for the high-throughput characterization of at least five modalities of information from each single cell: transcriptome, immune receptor clonotypes, surface markers, sample identity and sgRNAs. We demonstrate the use of ECCITE-seq to directly and efficiently capture sgRNA molecules and measure their effects on gene expression and protein levels, opening the possibility of performing high throughput single cell CRISPR screens with multimodal readout using existing libraries and commonly used vectors. Finally, by utilizing the combined phenotyping of clonotype and cell surface markers in immune cells, we apply ECCITE to study a lymphoma sample to discriminate cells and define molecular signatures of malignant cells within a heterogeneous population.