EP
Efthymia Papalexi
Author with expertise in Comprehensive Integration of Single-Cell Transcriptomic Data
Achievements
Cited Author
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
12
(83% Open Access)
Cited by:
30,943
h-index:
15
/
i10-index:
17
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Integrating single-cell transcriptomic data across different conditions, technologies, and species

Andrew Butler et al.Apr 2, 2018
Computational single-cell RNA-seq (scRNA-seq) methods have been successfully applied to experiments representing a single condition, technology, or species to discover and define cellular phenotypes. However, identifying subpopulations of cells that are present across multiple data sets remains challenging. Here, we introduce an analytical strategy for integrating scRNA-seq data sets based on common sources of variation, enabling the identification of shared populations across data sets and downstream comparative analysis. We apply this approach, implemented in our R toolkit Seurat (http://satijalab.org/seurat/), to align scRNA-seq data sets of peripheral blood mononuclear cells under resting and stimulated conditions, hematopoietic progenitors sequenced using two profiling technologies, and pancreatic cell 'atlases' generated from human and mouse islets. In each case, we learn distinct or transitional cell states jointly across data sets, while boosting statistical power through integrated analysis. Our approach facilitates general comparisons of scRNA-seq data sets, potentially deepening our understanding of how distinct cell states respond to perturbation, disease, and evolution.
0
41

Scalable, multimodal profiling of chromatin accessibility, gene expression and protein levels in single cells

Eleni Mimitou et al.Jun 3, 2021
Recent technological advances have enabled massively parallel chromatin profiling with scATAC-seq (single-cell assay for transposase accessible chromatin by sequencing). Here we present ATAC with select antigen profiling by sequencing (ASAP-seq), a tool to simultaneously profile accessible chromatin and protein levels. Our approach pairs sparse scATAC-seq data with robust detection of hundreds of cell surface and intracellular protein markers and optional capture of mitochondrial DNA for clonal tracking, capturing three distinct modalities in single cells. ASAP-seq uses a bridging approach that repurposes antibody:oligonucleotide conjugates designed for existing technologies that pair protein measurements with single-cell RNA sequencing. Together with DOGMA-seq, an adaptation of CITE-seq (cellular indexing of transcriptomes and epitopes by sequencing) for measuring gene activity across the central dogma of gene regulation, we demonstrate the utility of systematic multi-omic profiling by revealing coordinated and distinct changes in chromatin, RNA and surface proteins during native hematopoietic differentiation and peripheral blood mononuclear cell stimulation and as a combinatorial decoder and reporter of multiplexed perturbations in primary T cells. Chromatin accessibility, gene expression and protein levels are measured in the same single cell.
41
Citation314
0
Save
1

High sensitivity single cell RNA sequencing with split pool barcoding

Vuong Tran et al.Aug 27, 2022
Abstract Single cell RNA sequencing (scRNA-seq) has become a core tool for researchers to understand biology. As scRNA-seq has become more ubiquitous, many applications demand higher scalability and sensitivity. Split-pool combinatorial barcoding makes it possible to scale projects to hundreds of samples and millions of cells, overcoming limitations of previous droplet based technologies. However, there is still a need for increased sensitivity for both droplet and combinatorial barcoding based scRNA-seq technologies. To meet this need, here we introduce an updated combinatorial barcoding method for scRNA-seq with dramatically improved sensitivity. To assess performance, we profile a variety of sample types, including cell lines, human peripheral blood mononuclear cells (PBMCs), mouse brain nuclei, and mouse liver nuclei. When compared to the previously best performing approach, we find up to a 2.6-fold increase in unique transcripts detected per cell and up to a 1.8-fold increase in genes detected per cell. These improvements to transcript and gene detection increase the resolution of the resulting data, making it easier to distinguish cell types and states in heterogeneous samples. Split-pool combinatorial barcoding already enables scaling to millions of cells, the ability to perform scRNA-seq on previously fixed and frozen samples, and access to scRNA-seq without the need to purchase specialized lab equipment. Our hope is that by combining these previous advantages with the dramatic improvements to sensitivity presented here, we will elevate the standards and capabilities of scRNA-seq for the broader community.
1
Citation18
0
Save
0

Systematic reconstruction of molecular pathway signatures using scalable single-cell perturbation screens

Longda Jiang et al.Jan 30, 2024
ABSTRACT Recent advancements in functional genomics have provided an unprecedented ability to measure diverse molecular modalities, but learning causal regulatory relationships from observational data remains challenging. Here, we leverage pooled genetic screens and single cell sequencing (i.e. Perturb-seq) to systematically identify the targets of signaling regulators in diverse biological contexts. We demonstrate how Perturb-seq is compatible with recent and commercially available advances in combinatorial indexing and next-generation sequencing, and perform more than 1,500 perturbations split across six cell lines and five biological signaling contexts. We introduce an improved computational framework (Mixscale) to address cellular variation in perturbation efficiency, alongside optimized statistical methods to learn differentially expressed gene lists and conserved molecular signatures. Finally, we demonstrate how our Perturb-seq derived gene lists can be used to precisely infer changes in signaling pathway activation for in-vivo and in-situ samples. Our work enhances our understanding of signaling regulators and their targets, and lays a computational framework towards the data-driven inference of an ‘atlas’ of perturbation signatures.
0
Citation3
0
Save
0

Comprehensive integration of single cell data

Tim Stuart et al.Nov 2, 2018
Single cell transcriptomics (scRNA-seq) has transformed our ability to discover and annotate cell types and states, but deep biological understanding requires more than a taxonomic listing of clusters. As new methods arise to measure distinct cellular modalities, including high-dimensional immunophenotypes, chromatin accessibility, and spatial positioning, a key analytical challenge is to integrate these datasets into a harmonized atlas that can be used to better understand cellular identity and function. Here, we develop a computational strategy to "anchor" diverse datasets together, enabling us to integrate and compare single cell measurements not only across scRNA-seq technologies, but different modalities as well. After demonstrating substantial improvement over existing methods for data integration, we anchor scRNA-seq experiments with scATAC-seq datasets to explore chromatin differences in closely related interneuron subsets, and project single cell protein measurements onto a human bone marrow atlas to annotate and characterize lymphocyte populations. Lastly, we demonstrate how anchoring can harmonize in-situ gene expression and scRNA-seq datasets, allowing for the transcriptome-wide imputation of spatial gene expression patterns, and the identification of spatial relationships between mapped cell types in the visual cortex. Our work presents a strategy for comprehensive integration of single cell data, including the assembly of harmonized references, and the transfer of information across datasets. Availability: Installation instructions, documentation, and tutorials are available at: https://www.satijalab.org/seurat
Load More