In the mouse, glomeruli in the olfactory bulb receive projections from single classes of olfactory neurons, thereby forming an odour map. Information from the glomeruli is then relayed to the cortex but the projection patterns from individual glomeruli are not known. Three papers now examine the details of this projection. Luo and colleagues use a combination of genetics and retrograde mono-trans-synaptic rabies virus labelling. They trace the presynaptic connections of individual cortical neurons and find no evidence of connections supporting a stereotyped odour map in the cortex, but see systematic topographical differences in amygdala connectivity. The lack of stereotypical cortical projection is corroborated, both at the level of bulk axonal patterning and in projections of individually labelled neurons, by two papers — one from the Axel laboratory, and one from the Baldwin laboratory — that examine the anterograde projections from individual glomeruli. Together, these findings provide anatomical evidence for combinatorial processing of information from diverse glomeruli by cortical neurons and may also reflect different functions of various areas in mediating innate or learned odour preferences. Sensory information is transmitted to the brain where it must be processed to translate stimulus features into appropriate behavioural output. In the olfactory system, distributed neural activity in the nose is converted into a segregated map in the olfactory bulb1,2,3. Here we investigate how this ordered representation is transformed in higher olfactory centres in mice. We have developed a tracing strategy to define the neural circuits that convey information from individual glomeruli in the olfactory bulb to the piriform cortex and the cortical amygdala. The spatial order in the bulb is discarded in the piriform cortex; axons from individual glomeruli project diffusely to the piriform without apparent spatial preference. In the cortical amygdala, we observe broad patches of projections that are spatially stereotyped for individual glomeruli. These projections to the amygdala are overlapping and afford the opportunity for spatially localized integration of information from multiple glomeruli. The identification of a distributive pattern of projections to the piriform and stereotyped projections to the amygdala provides an anatomical context for the generation of learned and innate behaviours.