EF
Eric Feczko
Author with expertise in Analysis of Brain Functional Connectivity Networks
Allen Institute for Brain Science, University of Minnesota, University of Minnesota System
+ 7 more
Achievements
Open Access Advocate
Cited Author
Key Stats
Upvotes received:
0
Publications:
25
(64% Open Access)
Cited by:
69
h-index:
35
/
i10-index:
57
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
102

Adolescent Brain Cognitive Development (ABCD) Community MRI Collection and Utilities

Eric Feczko et al.Oct 11, 2023
+37
S
G
E
Abstract The Adolescent Brain Cognitive Development Study (ABCD), a 10 year longitudinal neuroimaging study of the largest population based and demographically distributed cohort of 9-10 year olds (N=11,877), was designed to overcome reproducibility limitations of prior child mental health studies. Besides the fantastic wealth of research opportunities, the extremely large size of the ABCD data set also creates enormous data storage, processing, and analysis challenges for researchers. To ensure data privacy and safety, researchers are not currently able to share neuroimaging data derivatives through the central repository at the National Data Archive (NDA). However, sharing derived data amongst researchers laterally can powerfully accelerate scientific progress, to ensure the maximum public benefit is derived from the ABCD study. To simultaneously promote collaboration and data safety, we developed the ABCD-BIDS Community Collection (ABCC), which includes both curated processed data and software utilities for further analyses. The ABCC also enables researchers to upload their own custom-processed versions of ABCD data and derivatives for sharing with the research community. This NeuroResource is meant to serve as the companion guide for the ABCC. In section we describe the ABCC. Section II highlights ABCC utilities that help researchers access, share, and analyze ABCD data, while section III provides two exemplar reproducibility analyses using ABCC utilities. We hope that adoption of the ABCC’s data-safe, open-science framework will boost access and reproducibility, thus facilitating progress in child and adolescent mental health research.
102
Citation40
0
Save
64

Personalized Functional Brain Network Topography Predicts Individual Differences in Youth Cognition

Arielle Keller et al.Oct 24, 2023
+21
V
A
A
Abstract Individual differences in cognition during childhood are associated with important social, physical, and mental health outcomes in adolescence and adulthood. Given that cortical surface arealization during development reflects the brain’s functional prioritization, quantifying variation in the topography of functional brain networks across the developing cortex may provide insight regarding individual differences in cognition. We test this idea by defining personalized functional networks (PFNs) that account for interindividual heterogeneity in functional brain network topography in 9-10 year olds from the Adolescent Brain Cognitive Development SM Study. Across matched discovery (n=3,525) and replication (n=3,447) samples, the total cortical representation of fronto-parietal PFNs positively correlated with general cognition. Cross-validated ridge regressions trained on PFN topography predicted cognition across domains, with prediction accuracy increasing along the cortex’s sensorimotor-association organizational axis. These results establish that functional network topography heterogeneity is associated with individual differences in cognition before the critical transition into adolescence.
64
Citation7
0
Save
68

A Precision Functional Atlas of Network Probabilities and Individual-Specific Network Topography

Robert Hermosillo et al.Oct 24, 2023
+21
E
L
R
SUMMARY The brain is organized into a broad set of functional neural networks. These networks and their various characteristics have been described and scrutinized through in vivo resting state functional magnetic resonance imaging (rs-fMRI). While the basic properties of networks are generally similar between healthy individuals, there is vast variability in the precise topography across the population. These individual differences are often lost in population studies due to population averaging which assumes topographical uniformity. We leveraged precision brain mapping methods to establish a new open-source, method-flexible set of precision functional network atlases: the Masonic Institute for the Developing Brain (MIDB) Precision Brain Atlas. Using participants from the Adolescent Brain Cognitive Development (ABCD) study, single subject precision network maps were generated with two supervised network-matching procedures (template matching and non-negative matrix factorization), an overlapping template matching method for identifying integration zones, as well as an unsupervised community detection algorithm (Infomap). From these individualized maps we also generated probabilistic network maps and integration zones for two demographically-matched groups of n∼3000 each. We demonstrate high reproducibility between groups (Pearson’s r >0.999) and between methods (r=0.96), revealing both regions of high invariance and high variability. Compared to using parcellations based on groups averages, the MIDB Precision Brain Atlas allowed us to derive a set of brain regions that are largely invariant in network topography across populations, which provides more reproducible statistical maps of executive function in brain-wide associations. We also explore an example use case for probabilistic maps, highlighting their potential for use in targeted neuromodulation. The MIDB Precision Brain Atlas is expandable to alternative datasets and methods and is provided open-source with an online web interface to encourage the scientific community to experiment with probabilistic atlases and individual-specific topographies to more precisely relate network phenomenon to functional organization of the human brain.
81

Curation of BIDS (CuBIDS): a workflow and software package for streamlining reproducible curation of large BIDS datasets

Sydney Covitz et al.Oct 24, 2023
+20
A
T
S
ABSTRACT The Brain Imaging Data Structure (BIDS) is a specification accompanied by a software ecosystem that was designed to create reproducible and automated workflows for processing neuroimaging data. BIDS Apps flexibly build workflows based on the metadata detected in a dataset. However, even BIDS valid metadata can include incorrect values or omissions that result in inconsistent processing across sessions. Additionally, in large-scale, heterogeneous neuroimaging datasets, hidden variability in metadata is difficult to detect and classify. To address these challenges, we created a Python-based software package titled “Curation of BIDS” (CuBIDS), which provides an intuitive workflow that helps users validate and manage the curation of their neuroimaging datasets. CuBIDS includes a robust implementation of BIDS validation that scales to large samples and incorporates DataLad––a version control software package for data––to ensure reproducibility and provenance tracking throughout the entire curation process. CuBIDS provides tools to help users perform quality control on their images’ metadata and identify unique combinations of imaging parameters. Users can then execute BIDS Apps on a subset of participants that represent the full range of acquisition parameters that are present, accelerating pipeline testing on large datasets. HIGHLIGHTS CuBIDS is a workflow and software package for curating BIDS data. CuBIDS summarizes the heterogeneity in a BIDS dataset. CuBIDS prepares BIDS data for successful preprocessing pipeline runs. CuBIDS helps users perform metadata-based quality control.
81
Citation4
0
Save
99

Motion Impact Score for Detecting Spurious Brain-Behavior Associations

Benjamin Kay et al.Oct 24, 2023
+34
S
D
B
Abstract Between-participant differences in head motion introduce systematic bias to resting state fMRI brain-wide association studies (BWAS) that is not completely removed by denoising algorithms. Researchers who study traits, or phenotypes associated with in-scanner head motion (e.g. psychiatric disorders) need to know if trait-functional connectivity (FC) effects are biased by residual motion artifact in order to avoid reporting false positive results. We devised an adaptable method, Split Half Analysis of Motion Associated Networks (SHAMAN), to assign a motion impact score to specific trait-FC effects. The SHAMAN approach distinguishes between motion artifact causing overestimation or underestimation of trait-FC effects. SHAMAN was > 95% specific at sample sizes of n = 100 and above. SHAMAN was powered to detect motion overestimation scores 80% of the time at sample sizes of n = 5,000 but could detect motion underestimation scores only 50% of the time at n = 5000, making it most useful for researchers seeking to avoid overestimating trait-FC effects in large BWAS. We computed motion impact scores for trait-FC effect with 45 demographic, biophysical, cognitive, and personality traits from n = 7,270 participants in the Adolescent Brain Cognitive Development (ABCD) Study. After standard denoising with ABCD-BIDS and without motion censoring, 42% (19/45) of traits had significant (p < 0.05) motion overestimation scores and 38% (17/45) of traits had significant motion underestimation scores. Censoring at framewise displacement (FD) < 0.2 mm reduced the proportion of traits with significant motion overestimation scores from 42% to 2% (1/45) but did not decrease the number of traits with significant motion underestimation scores.
68

A general exposome factor explains individual differences in functional brain network topography and cognition in youth

Arielle Keller et al.Oct 24, 2023
+16
A
T
A
ABSTRACT Our minds and brains are highly unique. Despite the long-recognized importance of the environment in shaping individual differences in cognitive neurodevelopment, only with the combination of deep phenotyping approaches and the availability of large-scale datasets have we been able to more comprehensively characterize the many inter-connected features of an individual’s environment and experience (“exposome”). Moreover, despite clear evidence that brain organization is highly individualized, most neuroimaging studies still rely on group atlases to define functional networks, smearing away inter-individual variation in the spatial layout of functional networks across the cortex (“functional topography”). Here, we leverage the largest longitudinal study of brain and behavior development in the United States to investigate how an individual’s exposome may contribute to functional brain network organization leading to differences in cognitive functioning. To do so, we apply three previously-validated data driven computational models to characterize an individual’s multidimensional exposome, define individual-specific maps of functional brain networks, and measure cognitive functioning across broad domains. In pre-registered analyses replicated across matched discovery ( n =5,139, 48.5% female) and replication ( n =5,137, 47.1% female) samples, we find that a child’s exposome is associated with multiple domains of cognitive functioning both at baseline assessment and two years later – over and above associations with baseline cognition. Cross-validated ridge regression models reveal that the exposome is reflected in children’s unique patterns of functional topography. Finally, we uncover both shared and unique contributions of the exposome and functional topography to cognitive abilities, finding that models trained on a single variable capturing a child’s exposome can more accurately and parsimoniously predict future cognitive performance than models trained on a wealth of personalized neuroimaging data. This study advances our understanding of how childhood environments contribute to unique patterns of functional brain organization and variability in cognitive abilities.
68
Citation3
0
Save
76

Using synthetic MR images for distortion correction

David Montez et al.Oct 24, 2023
+19
R
A
D
Abstract Functional MRI (fMRI) data acquired using echo-planar imaging (EPI) are highly distorted by magnetic field inhomogeneities. Distortion combined with underlying differences in image contrast between EPI and T1-weighted and T2-weighted (T1w/T2w) structural images makes the alignment of functional and anatomical images a challenge. Typically, separately acquired field map data are used to correct fMRI distortions and a flexible cost function insensitive to cross-modal differences in image contrast and intensity is used for aligning fMRI and anatomical images. The quality of alignment achieved with this approach can vary greatly and depends on the quality of field map data. In addition, many publicly available datasets lack field map data entirely. To address this issue, we developed Synth , a software package for distortion correction and cross-modal image registration that does not require separately acquired field map data. Synth combines information from T1w and T2w anatomical images to construct an idealized undistorted synthetic image that has similar contrast properties to fMRI data. The undistorted synthetic image then serves as an effective reference for individual-specific nonlinear unwarping to correct fMRI distortions. We demonstrate, in both pediatric (ABCD: Adolescent Brain Cognitive Development) and adult (MSC: Midnight Scan Club) data that Synth performs comparably well to other leading distortion correction approaches that utilize field map data, and often outperforms them. Field map-less distortion correction with Synth allows accurate and precise registration of fMRI data with missing or corrupted field map information.
0

Moving beyond processing- and analysis-related variation in resting-state functional brain imaging

Xinhui Li et al.Sep 12, 2024
+17
L
N
X
1

BIBSNet: A Deep Learning Baby Image Brain Segmentation Network for MRI Scans

Timothy Hendrickson et al.Oct 24, 2023
+22
L
P
T
Brain segmentation of infant magnetic resonance (MR) images is vitally important in studying developmental mental health and disease. The infant brain undergoes many changes throughout the first years of postnatal life, making tissue segmentation difficult for most existing algorithms. Here, we introduce a deep neural network BIBSNet (Baby and Infant Brain Segmentation Neural Network), an open-source, community-driven model that relies on data augmentation and a large sample size of manually annotated images to facilitate the production of robust and generalizable brain segmentations.Included in model training and testing were MR brain images on 84 participants with an age range of 0-8 months (median postmenstrual ages of 13.57 months). Using manually annotated real and synthetic segmentation images, the model was trained using a 10-fold cross-validation procedure. Testing occurred on MRI data processed with the DCAN labs infant-ABCD-BIDS processing pipeline using segmentations produced from gold standard manual annotation, joint-label fusion (JLF), and BIBSNet to assess model performance.Using group analyses, results suggest that cortical metrics produced using BIBSNet segmentations outperforms JLF segmentations. Additionally, when analyzing individual differences, BIBSNet segmentations perform even better.BIBSNet segmentation shows marked improvement over JLF segmentations across all age groups analyzed. The BIBSNet model is 600x faster compared to JLF and can be easily included in other processing pipelines.
1
Citation1
0
Save
0

XCP-D: A robust pipeline for the post-processing of fMRI data

Kahini Mehta et al.Sep 12, 2024
+20
M
M
K
Abstract Functional neuroimaging is an essential tool for neuroscience research. Pre-processing pipelines produce standardized, minimally pre-processed data to support a range of potential analyses. However, post-processing is not similarly standardized. While several options for post-processing exist, they may not support output from different pre-processing pipelines, may have limited documentation, and may not follow generally accepted data organization standards (e.g., Brain Imaging Data Structure (BIDS)). In response, we present XCP-D: a collaborative effort between PennLINC at the University of Pennsylvania and the DCAN lab at the University of Minnesota. XCP-D uses an open development model on GitHub and incorporates continuous integration testing; it is distributed as a Docker container or Apptainer image. XCP-D generates denoised BOLD images and functional derivatives from resting-state data in either NIfTI or CIFTI files following pre-processing with fMRIPrep, HCP, or ABCD-BIDS pipelines. Even prior to its official release, XCP-D has been downloaded &gt;5,000 times from DockerHub. Together, XCP-D facilitates robust, scalable, and reproducible post-processing of fMRI data.
Load More