EF
Eric Feczko
Author with expertise in Analysis of Brain Functional Connectivity Networks
Achievements
Cited Author
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
33
(76% Open Access)
Cited by:
5,499
h-index:
35
/
i10-index:
61
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Reproducible brain-wide association studies require thousands of individuals

Scott Marek et al.Mar 16, 2022
Abstract Magnetic resonance imaging (MRI) has transformed our understanding of the human brain through well-replicated mapping of abilities to specific structures (for example, lesion studies) and functions 1–3 (for example, task functional MRI (fMRI)). Mental health research and care have yet to realize similar advances from MRI. A primary challenge has been replicating associations between inter-individual differences in brain structure or function and complex cognitive or mental health phenotypes (brain-wide association studies (BWAS)). Such BWAS have typically relied on sample sizes appropriate for classical brain mapping 4 (the median neuroimaging study sample size is about 25), but potentially too small for capturing reproducible brain–behavioural phenotype associations 5,6 . Here we used three of the largest neuroimaging datasets currently available—with a total sample size of around 50,000 individuals—to quantify BWAS effect sizes and reproducibility as a function of sample size. BWAS associations were smaller than previously thought, resulting in statistically underpowered studies, inflated effect sizes and replication failures at typical sample sizes. As sample sizes grew into the thousands, replication rates began to improve and effect size inflation decreased. More robust BWAS effects were detected for functional MRI (versus structural), cognitive tests (versus mental health questionnaires) and multivariate methods (versus univariate). Smaller than expected brain–phenotype associations and variability across population subsamples can explain widespread BWAS replication failures. In contrast to non-BWAS approaches with larger effects (for example, lesions, interventions and within-person), BWAS reproducibility requires samples with thousands of individuals.
0
Citation1,226
0
Save
0

The Cortical Signature of Alzheimer's Disease: Regionally Specific Cortical Thinning Relates to Symptom Severity in Very Mild to Mild AD Dementia and is Detectable in Asymptomatic Amyloid-Positive Individuals

Bradford Dickerson et al.Jul 16, 2008
Alzheimer's disease (AD) is associated with neurodegeneration in vulnerable limbic and heteromodal regions of the cerebral cortex, detectable in vivo using magnetic resonance imaging. It is not clear whether abnormalities of cortical anatomy in AD can be reliably measured across different subject samples, how closely they track symptoms, and whether they are detectable prior to symptoms. An exploratory map of cortical thinning in mild AD was used to define regions of interest that were applied in a hypothesis-driven fashion to other subject samples. Results demonstrate a reliably quantifiable in vivo signature of abnormal cortical anatomy in AD, which parallels known regional vulnerability to AD neuropathology. Thinning in vulnerable cortical regions relates to symptom severity even in the earliest stages of clinical symptoms. Furthermore, subtle thinning is present in asymptomatic older controls with brain amyloid binding as detected with amyloid imaging. The reliability and clinical validity of AD-related cortical thinning suggests potential utility as an imaging biomarker. This “disease signature” approach to cortical morphometry, in which disease effects are mapped across the cortical mantle and then used to define ROIs for hypothesis-driven analyses, may provide a powerful methodological framework for studies of neuropsychiatric diseases.
1

Brain charts for the human lifespan

Richard Bethlehem et al.Apr 6, 2022
Abstract Over the past few decades, neuroimaging has become a ubiquitous tool in basic research and clinical studies of the human brain. However, no reference standards currently exist to quantify individual differences in neuroimaging metrics over time, in contrast to growth charts for anthropometric traits such as height and weight 1 . Here we assemble an interactive open resource to benchmark brain morphology derived from any current or future sample of MRI data ( http://www.brainchart.io/ ). With the goal of basing these reference charts on the largest and most inclusive dataset available, acknowledging limitations due to known biases of MRI studies relative to the diversity of the global population, we aggregated 123,984 MRI scans, across more than 100 primary studies, from 101,457 human participants between 115 days post-conception to 100 years of age. MRI metrics were quantified by centile scores, relative to non-linear trajectories 2 of brain structural changes, and rates of change, over the lifespan. Brain charts identified previously unreported neurodevelopmental milestones 3 , showed high stability of individuals across longitudinal assessments, and demonstrated robustness to technical and methodological differences between primary studies. Centile scores showed increased heritability compared with non-centiled MRI phenotypes, and provided a standardized measure of atypical brain structure that revealed patterns of neuroanatomical variation across neurological and psychiatric disorders. In summary, brain charts are an essential step towards robust quantification of individual variation benchmarked to normative trajectories in multiple, commonly used neuroimaging phenotypes.
1
Citation824
0
Save
0

Maternal IL-6 during pregnancy can be estimated from newborn brain connectivity and predicts future working memory in offspring

Marc Rudolph et al.Apr 9, 2018
Several lines of evidence support the link between maternal inflammation during pregnancy and increased likelihood of neurodevelopmental and psychiatric disorders in offspring. This longitudinal study seeks to advance understanding regarding implications of systemic maternal inflammation during pregnancy, indexed by plasma interleukin-6 (IL-6) concentrations, for large-scale brain system development and emerging executive function skills in offspring. We assessed maternal IL-6 during pregnancy, functional magnetic resonance imaging acquired in neonates, and working memory (an important component of executive function) at 2 years of age. Functional connectivity within and between multiple neonatal brain networks can be modeled to estimate maternal IL-6 concentrations during pregnancy. Brain regions heavily weighted in these models overlap substantially with those supporting working memory in a large meta-analysis. Maternal IL-6 also directly accounts for a portion of the variance of working memory at 2 years of age. Findings highlight the association of maternal inflammation during pregnancy with the developing functional architecture of the brain and emerging executive function. The authors show that maternal inflammation during pregnancy, indexed by IL-6, can be estimated from the newborn brain connectome and predicts future working memory performance in offspring at two years of age.
0
Citation309
0
Save
102

Adolescent Brain Cognitive Development (ABCD) Community MRI Collection and Utilities

Eric Feczko et al.Jul 11, 2021
Abstract The Adolescent Brain Cognitive Development Study (ABCD), a 10 year longitudinal neuroimaging study of the largest population based and demographically distributed cohort of 9-10 year olds (N=11,877), was designed to overcome reproducibility limitations of prior child mental health studies. Besides the fantastic wealth of research opportunities, the extremely large size of the ABCD data set also creates enormous data storage, processing, and analysis challenges for researchers. To ensure data privacy and safety, researchers are not currently able to share neuroimaging data derivatives through the central repository at the National Data Archive (NDA). However, sharing derived data amongst researchers laterally can powerfully accelerate scientific progress, to ensure the maximum public benefit is derived from the ABCD study. To simultaneously promote collaboration and data safety, we developed the ABCD-BIDS Community Collection (ABCC), which includes both curated processed data and software utilities for further analyses. The ABCC also enables researchers to upload their own custom-processed versions of ABCD data and derivatives for sharing with the research community. This NeuroResource is meant to serve as the companion guide for the ABCC. In section we describe the ABCC. Section II highlights ABCC utilities that help researchers access, share, and analyze ABCD data, while section III provides two exemplar reproducibility analyses using ABCC utilities. We hope that adoption of the ABCC’s data-safe, open-science framework will boost access and reproducibility, thus facilitating progress in child and adolescent mental health research.
68

A Precision Functional Atlas of Network Probabilities and Individual-Specific Network Topography

Robert Hermosillo et al.Jan 13, 2022
SUMMARY The brain is organized into a broad set of functional neural networks. These networks and their various characteristics have been described and scrutinized through in vivo resting state functional magnetic resonance imaging (rs-fMRI). While the basic properties of networks are generally similar between healthy individuals, there is vast variability in the precise topography across the population. These individual differences are often lost in population studies due to population averaging which assumes topographical uniformity. We leveraged precision brain mapping methods to establish a new open-source, method-flexible set of precision functional network atlases: the Masonic Institute for the Developing Brain (MIDB) Precision Brain Atlas. Using participants from the Adolescent Brain Cognitive Development (ABCD) study, single subject precision network maps were generated with two supervised network-matching procedures (template matching and non-negative matrix factorization), an overlapping template matching method for identifying integration zones, as well as an unsupervised community detection algorithm (Infomap). From these individualized maps we also generated probabilistic network maps and integration zones for two demographically-matched groups of n∼3000 each. We demonstrate high reproducibility between groups (Pearson’s r >0.999) and between methods (r=0.96), revealing both regions of high invariance and high variability. Compared to using parcellations based on groups averages, the MIDB Precision Brain Atlas allowed us to derive a set of brain regions that are largely invariant in network topography across populations, which provides more reproducible statistical maps of executive function in brain-wide associations. We also explore an example use case for probabilistic maps, highlighting their potential for use in targeted neuromodulation. The MIDB Precision Brain Atlas is expandable to alternative datasets and methods and is provided open-source with an online web interface to encourage the scientific community to experiment with probabilistic atlases and individual-specific topographies to more precisely relate network phenomenon to functional organization of the human brain.
64

Personalized Functional Brain Network Topography Predicts Individual Differences in Youth Cognition

Arielle Keller et al.Oct 14, 2022
Abstract Individual differences in cognition during childhood are associated with important social, physical, and mental health outcomes in adolescence and adulthood. Given that cortical surface arealization during development reflects the brain’s functional prioritization, quantifying variation in the topography of functional brain networks across the developing cortex may provide insight regarding individual differences in cognition. We test this idea by defining personalized functional networks (PFNs) that account for interindividual heterogeneity in functional brain network topography in 9-10 year olds from the Adolescent Brain Cognitive Development SM Study. Across matched discovery (n=3,525) and replication (n=3,447) samples, the total cortical representation of fronto-parietal PFNs positively correlated with general cognition. Cross-validated ridge regressions trained on PFN topography predicted cognition across domains, with prediction accuracy increasing along the cortex’s sensorimotor-association organizational axis. These results establish that functional network topography heterogeneity is associated with individual differences in cognition before the critical transition into adolescence.
81

Curation of BIDS (CuBIDS): a workflow and software package for streamlining reproducible curation of large BIDS datasets

Sydney Covitz et al.May 5, 2022
ABSTRACT The Brain Imaging Data Structure (BIDS) is a specification accompanied by a software ecosystem that was designed to create reproducible and automated workflows for processing neuroimaging data. BIDS Apps flexibly build workflows based on the metadata detected in a dataset. However, even BIDS valid metadata can include incorrect values or omissions that result in inconsistent processing across sessions. Additionally, in large-scale, heterogeneous neuroimaging datasets, hidden variability in metadata is difficult to detect and classify. To address these challenges, we created a Python-based software package titled “Curation of BIDS” (CuBIDS), which provides an intuitive workflow that helps users validate and manage the curation of their neuroimaging datasets. CuBIDS includes a robust implementation of BIDS validation that scales to large samples and incorporates DataLad––a version control software package for data––to ensure reproducibility and provenance tracking throughout the entire curation process. CuBIDS provides tools to help users perform quality control on their images’ metadata and identify unique combinations of imaging parameters. Users can then execute BIDS Apps on a subset of participants that represent the full range of acquisition parameters that are present, accelerating pipeline testing on large datasets. HIGHLIGHTS CuBIDS is a workflow and software package for curating BIDS data. CuBIDS summarizes the heterogeneity in a BIDS dataset. CuBIDS prepares BIDS data for successful preprocessing pipeline runs. CuBIDS helps users perform metadata-based quality control.
Load More