AZ
Annie Zheng
Author with expertise in Analysis of Brain Functional Connectivity Networks
Xi'an International Studies University, Cancer Institute of New South Wales, Washington University in St. Louis
+ 7 more
Achievements
Open Access Advocate
Cited Author
Key Stats
Upvotes received:
0
Publications:
8
(100% Open Access)
Cited by:
37
h-index:
11
/
i10-index:
13
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
1

Cingulo-Opercular Control Network Supports Disused Motor Circuits in Standby Mode

Dillan Newbold et al.Oct 24, 2023
+20
T
E
D
Abstract Whole-brain resting-state functional MRI (rs-fMRI) during two weeks of limb constraint revealed that disused motor regions became more strongly connected to the cingulo-opercular network (CON), an executive control network that includes regions of the dorsal anterior cingulate cortex (dACC) and insula (1). Disuse-driven increases in functional connectivity (FC) were specific to the CON and somatomotor networks and did not involve any other networks, such as the salience, frontoparietal, or default mode networks. Censoring and modeling analyses showed that FC increases during casting were mediated by large, spontaneous activity pulses that appeared in the disused motor regions and CON control regions. During limb constraint, disused motor circuits appear to enter a standby mode characterized by spontaneous activity pulses and strengthened connectivity to CON executive control regions. Significance Many studies have examined plasticity in the primary somatosensory and motor cortex during disuse, but little is known about how disuse impacts the brain outside of primary cortical areas. We leveraged the whole-brain coverage of resting-state functional MRI (rs-fMRI) to discover that disuse drives plasticity of distant executive control regions in the cingulo-opercular network (CON). Two complementary analyses, pulse censoring and pulse addition, demonstrated that increased functional connectivity between the CON and disused motor regions was driven by large, spontaneous pulses of activity in the CON and disused motor regions. These results point to a previously unknown role for the CON in supporting motor plasticity and reveal spontaneous activity pulses as a novel mechanism for reorganizing the brain’s functional connections.
1
Citation10
0
Save
2

A mind-body interface alternates with effector-specific regions in motor cortex

Evan Gordon et al.Nov 4, 2022
+43
A
R
E
SUMMARY Primary motor cortex (M1) has been thought to form a continuous somatotopic homunculus extending down precentral gyrus from foot to face representations 1,2 . The motor homunculus has remained a textbook pillar of functional neuroanatomy, despite evidence for concentric functional zones 3 and maps of complex actions 4 . Using our highest precision functional magnetic resonance imaging (fMRI) data and methods, we discovered that the classic homunculus is interrupted by regions with sharpy distinct connectivity, structure, and function, alternating with effector-specific (foot, hand, mouth) areas. These inter-effector regions exhibit decreased cortical thickness and strong functional connectivity to each other, and to prefrontal, insular, and subcortical regions of the Cingulo-opercular network (CON), critical for executive action 5 and physiological control 6 , arousal 7 , and processing of errors 8 and pain 9 . This interdigitation of action control-linked and motor effector regions was independently verified in the three largest fMRI datasets. Macaque and pediatric (newborn, infant, child) precision fMRI revealed potential cross-species analogues and developmental precursors of the inter-effector system. An extensive battery of motor and action fMRI tasks documented concentric somatotopies for each effector, separated by the CON-linked inter-effector regions. The inter-effector regions lacked movement specificity and co-activated during action planning (coordination of hands and feet), and axial body movement (e.g., abdomen, eyebrows). These results, together with prior work demonstrating stimulation-evoked complex actions 4 and connectivity to internal organs (e.g., adrenal medulla) 10 , suggest that M1 is punctuated by an integrative system for implementing whole-body action plans. Thus, two parallel systems intertwine in motor cortex to form an integrate-isolate pattern: effector-specific regions (foot, hand, mouth) for isolating fine motor control, and a mind-body interface (MBI) for the integrative whole-organism coordination of goals, physiology, and body movement.
0

Human Fronto-Striatal Connectivity is Organized into Discrete Functional Subnetworks

Evan Gordon et al.May 28, 2024
+16
S
T
E
Abstract The striatum is interconnected with the cerebral cortex via multiple recurrent loops that play a major role in many neuropsychiatric conditions. Primate cortico-striatal connections can be precisely mapped using invasive tract-tracing. However, noninvasive human research has not mapped these connections with anatomical precision, limited by the practice of averaging neuroimaging data across individuals. Here we utilized highly-sampled resting-state functional connectivity MRI for individually-specific precision functional mapping of cortico-striatal connections. We identified ten discrete, individual-specific subnetworks linking cortex—predominately frontal cortex—to striatum. These subnetworks included previously unknown striatal connections to the human language network. The discrete subnetworks formed a stepped rostral-caudal gradient progressing from nucleus accumbens to posterior putamen; this organization was strongest for projections from medial frontal cortex. The stepped gradient organization fit patterns of fronto-striatal connections better than a smooth, continuous gradient. Thus, precision subnetworks identify detailed, individual-specific stepped gradients of cortico-striatal connectivity that include human-specific language networks.
0
Citation7
0
Save
1

Parallel Hippocampal-Parietal Circuits for Self- and Goal-oriented Processing

Annie Zheng et al.Oct 24, 2023
+19
S
D
A
SUMMARY The hippocampus is critically important for a diverse range of cognitive processes, such as episodic memory, prospective memory, affective processing, and spatial navigation. The human hippocampus has been thought of as being solely functionally connected to a set of neocortical regions known as the default mode network (DMN), which supports self-referential cognition. Using individual-specific precision functional mapping of resting state fMRI data, we found the anterior hippocampus (head and body) to be preferentially connected to the DMN as expected. The hippocampal tail, however, was strongly preferentially connected to the parietal memory network (PMN), which supports goal-oriented cognition and stimulus recognition. This resting state functional connectivity (RSFC) anterior-posterior dichotomy was well-matched by differences in task deactivations and anatomical segmentations of the hippocampus. Task deactivations were localized to the head and body of the hippocampus (DMN), relatively sparing the tail (PMN). Anterior and posterior hippocampal connectivity was network-specific even though the DMN and PMN are interdigitated in medial parietal cortex. The functional dichotomization of the hippocampus into anterior DMN-connected and posterior PMN-connected parcels suggests parallel, but distinct circuits between the hippocampus and medial parietal cortex for self vs. goal-oriented processing.
1
Citation5
0
Save
99

Motion Impact Score for Detecting Spurious Brain-Behavior Associations

Benjamin Kay et al.Oct 24, 2023
+34
S
D
B
Abstract Between-participant differences in head motion introduce systematic bias to resting state fMRI brain-wide association studies (BWAS) that is not completely removed by denoising algorithms. Researchers who study traits, or phenotypes associated with in-scanner head motion (e.g. psychiatric disorders) need to know if trait-functional connectivity (FC) effects are biased by residual motion artifact in order to avoid reporting false positive results. We devised an adaptable method, Split Half Analysis of Motion Associated Networks (SHAMAN), to assign a motion impact score to specific trait-FC effects. The SHAMAN approach distinguishes between motion artifact causing overestimation or underestimation of trait-FC effects. SHAMAN was > 95% specific at sample sizes of n = 100 and above. SHAMAN was powered to detect motion overestimation scores 80% of the time at sample sizes of n = 5,000 but could detect motion underestimation scores only 50% of the time at n = 5000, making it most useful for researchers seeking to avoid overestimating trait-FC effects in large BWAS. We computed motion impact scores for trait-FC effect with 45 demographic, biophysical, cognitive, and personality traits from n = 7,270 participants in the Adolescent Brain Cognitive Development (ABCD) Study. After standard denoising with ABCD-BIDS and without motion censoring, 42% (19/45) of traits had significant (p < 0.05) motion overestimation scores and 38% (17/45) of traits had significant motion underestimation scores. Censoring at framewise displacement (FD) < 0.2 mm reduced the proportion of traits with significant motion overestimation scores from 42% to 2% (1/45) but did not decrease the number of traits with significant motion underestimation scores.
76

Using synthetic MR images for distortion correction

David Montez et al.Oct 24, 2023
+19
R
A
D
Abstract Functional MRI (fMRI) data acquired using echo-planar imaging (EPI) are highly distorted by magnetic field inhomogeneities. Distortion combined with underlying differences in image contrast between EPI and T1-weighted and T2-weighted (T1w/T2w) structural images makes the alignment of functional and anatomical images a challenge. Typically, separately acquired field map data are used to correct fMRI distortions and a flexible cost function insensitive to cross-modal differences in image contrast and intensity is used for aligning fMRI and anatomical images. The quality of alignment achieved with this approach can vary greatly and depends on the quality of field map data. In addition, many publicly available datasets lack field map data entirely. To address this issue, we developed Synth , a software package for distortion correction and cross-modal image registration that does not require separately acquired field map data. Synth combines information from T1w and T2w anatomical images to construct an idealized undistorted synthetic image that has similar contrast properties to fMRI data. The undistorted synthetic image then serves as an effective reference for individual-specific nonlinear unwarping to correct fMRI distortions. We demonstrate, in both pediatric (ABCD: Adolescent Brain Cognitive Development) and adult (MSC: Midnight Scan Club) data that Synth performs comparably well to other leading distortion correction approaches that utilize field map data, and often outperforms them. Field map-less distortion correction with Synth allows accurate and precise registration of fMRI data with missing or corrupted field map information.
45

Precision Diffusion Imaging

Nicole Seider et al.Oct 24, 2023
+20
R
B
N
Abstract Diffusion tensor imaging (DTI) aims to non-invasively characterize the anatomy and integrity of the brain’s white matter fibers. To establish individual-specific precision approaches for DTI, we defined its reliability and accuracy as a function of data quantity and analysis method, using both simulations and highly sampled individual-specific data (927-1442 diffusion weighted images [DWIs] per individual). DTI methods that allow for crossing fibers (BedpostX [BPX], Q-Ball Imaging [QBI]) estimated excess fibers when insufficient data was present and when the data did not match the model priors. To reduce such overfitting, we developed a novel crossing-fiber diffusion imaging method, Bayesian Multi-tensor Model-selection (BaMM), that is designed for high-quality repeated sampling data sets. BaMM was robust to overfitting, showing high reliability and the relatively best crossing-fiber accuracy with increasing amounts of diffusion data. Thus, the choice of diffusion imaging analysis method is important for the success of individual-specific diffusion imaging. Importantly, for potential clinical applications of individual-specific precision DTI, such as deep brain stimulation (DBS), other forms of neuromodulation or neurosurgical planning, the data quantities required to achieve DTI reliability are lower than for functional MRI measures.
45
Citation2
0
Save
774

Towards Reproducible Brain-Wide Association Studies

Scott Marek et al.Oct 11, 2023
+34
F
B
S
Abstract Magnetic resonance imaging (MRI) continues to drive many important neuroscientific advances. However, progress in uncovering reproducible associations between individual differences in brain structure/function and behavioral phenotypes (e.g., cognition, mental health) may have been undermined by typical neuroimaging sample sizes (median N=25) 1,2 . Leveraging the Adolescent Brain Cognitive Development (ABCD) Study 3 (N=11,878), we estimated the effect sizes and reproducibility of these brain-wide associations studies (BWAS) as a function of sample size. The very largest, replicable brain-wide associations for univariate and multivariate methods were r=0.14 and r=0.34, respectively. In smaller samples, typical for brain-wide association studies (BWAS), irreproducible, inflated effect sizes were ubiquitous, no matter the method (univariate, multivariate). Until sample sizes started to approach consortium-levels, BWAS were underpowered and statistical errors assured. Multiple factors contribute to replication failures 4–6 ; here, we show that the pairing of small brain-behavioral phenotype effect sizes with sampling variability is a key element in wide-spread BWAS replication failure. Brain-behavioral phenotype associations stabilize and become more reproducible with sample sizes of N⪆2,000. While investigator-initiated brain-behavior research continues to generate hypotheses and propel innovation, large consortia are needed to usher in a new era of reproducible human brain-wide association studies.