Bt
Benjamin tenOever
Author with expertise in Coronavirus Disease 2019 Research
New York University, Icahn School of Medicine at Mount Sinai, NYU Langone Health
+ 8 more
Achievements
Cited Author
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
25
(72% Open Access)
Cited by:
122
h-index:
59
/
i10-index:
126
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
110

Targeted Down Regulation Of Core Mitochondrial Genes During SARS-CoV-2 Infection

Joseph Guarnieri et al.Oct 13, 2023
+40
H
J
J
Defects in mitochondrial oxidative phosphorylation (OXPHOS) have been reported in COVID-19 patients, but the timing and organs affected vary among reports. Here, we reveal the dynamics of COVID-19 through transcription profiles in nasopharyngeal and autopsy samples from patients and infected rodent models. While mitochondrial bioenergetics is repressed in the viral nasopharyngeal portal of entry, it is up regulated in autopsy lung tissues from deceased patients. In most disease stages and organs, discrete OXPHOS functions are blocked by the virus, and this is countered by the host broadly up regulating unblocked OXPHOS functions. No such rebound is seen in autopsy heart, results in severe repression of genes across all OXPHOS modules. Hence, targeted enhancement of mitochondrial gene expression may mitigate the pathogenesis of COVID-19.
24

Disruption of nuclear architecture as a cause of COVID-19 induced anosmia

Marianna Zazhytska et al.Oct 24, 2023
+11
D
A
M
Olfaction relies on a coordinated partnership between odorant flow and neuronal communication. Disruption in our ability to detect odors, or anosmia, has emerged as a hallmark symptom of infection with SARS-CoV-2, yet the mechanism behind this abrupt sensory deficit remains elusive. Here, using molecular evaluation of human olfactory epithelium (OE) from subjects succumbing to COVID-19 and a hamster model of SARS-CoV-2 infection, we discovered widespread downregulation of olfactory receptors (ORs) as well as key components of their signaling pathway. OR downregulation likely represents a non-cell autonomous effect, since SARS-CoV-2 detection in OSNs is extremely rare both in human and hamster OEs. A likely explanation for the reduction of OR transcription is the striking reorganization of nuclear architecture observed in the OSN lineage, which disrupts multi-chromosomal compartments regulating OR expression in humans and hamsters. Our experiments uncover a novel molecular mechanism by which a virus with a very selective tropism can elicit persistent transcriptional changes in cells that evade it, contributing to the severity of COVID-19.
24
Paper
Citation22
0
Save
5

SARS-CoV-2 Infects Syncytiotrophoblast and Activates Inflammatory Responses in the Placenta

Lissenya Argueta et al.Oct 24, 2023
+19
Y
L
L
SARS-CoV-2 infection during pregnancy leads to an increased risk of adverse pregnancy outcomes. Although the placenta itself can be a target of virus infection, most neonates are virus free and are born healthy or recover quickly. Here, we investigated the impact of SARS-CoV-2 infection on the placenta from a cohort of women who were infected late during pregnancy and had tested nasal swab positive for SARS-CoV-2 by qRT-PCR at delivery. SARS-CoV-2 genomic and subgenomic RNA was detected in 23 out of 54 placentas. Two placentas with high virus content were obtained from mothers who presented with severe COVID-19 and whose pregnancies resulted in adverse outcomes for the fetuses, including intrauterine fetal demise and a preterm delivered baby still in newborn intensive care. Examination of the placental samples with high virus content showed efficient SARS-CoV-2 infection, using RNA in situ hybridization to detect genomic and replicating viral RNA, and immunohistochemistry to detect SARS-CoV-2 nucleocapsid protein. Infection was restricted to syncytiotrophoblast cells that envelope the fetal chorionic villi and are in direct contact with maternal blood. The infected placentas displayed massive infiltration of maternal immune cells including macrophages into intervillous spaces, potentially contributing to inflammation of the tissue. Ex vivo infection of placental cultures with SARS-CoV-2 or with SARS-CoV-2 spike (S) protein pseudotyped lentivirus targeted mostly syncytiotrophoblast and in rare events endothelial cells. Infection was reduced by using blocking antibodies against ACE2 and against Neuropilin 1, suggesting that SARS-CoV-2 may utilize alternative receptors for entry into placental cells.
380

SARS-CoV-2 infection results in lasting and systemic perturbations post recovery

Justin Frere et al.Oct 24, 2023
+20
K
R
J
SUMMARY SARS-CoV-2 has been found capable of inducing prolonged pathologies collectively referred to as Long-COVID. To better understand this biology, we compared the short- and long-term systemic responses in the golden hamster following either SARS-CoV-2 or influenza A virus (IAV) infection. While SARS-CoV-2 exceeded IAV in its capacity to cause injury to the lung and kidney, the most significant changes were observed in the olfactory bulb (OB) and olfactory epithelium (OE) where inflammation was visible beyond one month post SARS-CoV-2 infection. Despite a lack of detectable virus, OB/OE demonstrated microglial and T cell activation, proinflammatory cytokine production, and interferon responses that correlated with behavioral changes. These findings could be corroborated through sequencing of individuals who recovered from COVID-19, as sustained inflammation in OB/OE tissue remained evident months beyond disease resolution. These data highlight a molecular mechanism for persistent COVID-19 symptomology and characterize a small animal model to develop future therapeutics.
14

SARS-CoV-2 hijacks p38β/MAPK11 to promote virus replication

Christina Higgins et al.Oct 24, 2023
+13
A
B
C
Abstract SARS-CoV-2, the causative agent of the COVID-19 pandemic, drastically modifies infected cells in an effort to optimize virus replication. Included is the activation of the host p38 mitogen-activated protein kinase (MAPK) pathway, which plays a major role in inflammation and is a central driver of COVID-19 clinical presentations. Inhibition of p38/MAPK activity in SARS-CoV-2-infected cells reduces both cytokine production and viral replication. Here, we combined genetic screening with quantitative phosphoproteomics to better understand interactions between the p38/MAPK pathway and SARS-CoV-2. We found that several components of the p38/MAPK pathway impacted SARS-CoV-2 replication and that p38β is a critical host factor for virus replication, and it prevents activation of the type-I interferon pathway. Quantitative phosphoproteomics uncovered several SARS-CoV-2 nucleocapsid phosphorylation sites near the N-terminus that were sensitive to p38 inhibition. Similar to p38β depletion, mutation of these nucleocapsid residues was associated with reduced virus replication and increased activation of type-I interferon signaling. Taken together, this study reveals a unique proviral function for p38β that is not shared with p38α and supports exploring p38β inhibitor development as a strategy towards developing a new class of COVID-19 therapies. Importance SARS-CoV-2 is the causative agent of the COVID-19 pandemic that has claimed millions of lives since its emergence in 2019. SARS-CoV-2 infection of human cells requires the activity of several cellular pathways for successful replication. One such pathway, the p38 mitogen-activated protein kinase (MAPK) pathway, is required for virus replication and disease pathogenesis. Here, we applied systems biology approaches to understand how MAPK pathways benefit SARS-CoV-2 replication to inform the development of novel COVID-19 drug therapies.
0

Mouse genome rewriting and tailoring of three important disease loci

Weimin Zhang et al.Mar 8, 2024
+18
R
I
W
Genetically engineered mouse models (GEMMs) help us to understand human pathologies and develop new therapies, yet faithfully recapitulating human diseases in mice is challenging. Advances in genomics have highlighted the importance of non-coding regulatory genome sequences, which control spatiotemporal gene expression patterns and splicing in many human diseases1,2. Including regulatory extensive genomic regions, which requires large-scale genome engineering, should enhance the quality of disease modelling. Existing methods set limits on the size and efficiency of DNA delivery, hampering the routine creation of highly informative models that we call genomically rewritten and tailored GEMMs (GREAT-GEMMs). Here we describe 'mammalian switching antibiotic resistance markers progressively for integration' (mSwAP-In), a method for efficient genome rewriting in mouse embryonic stem cells. We demonstrate the use of mSwAP-In for iterative genome rewriting of up to 115 kb of a tailored Trp53 locus, as well as for humanization of mice using 116 kb and 180 kb human ACE2 loci. The ACE2 model recapitulated human ACE2 expression patterns and splicing, and notably, presented milder symptoms when challenged with SARS-CoV-2 compared with the existing K18-hACE2 model, thus representing a more human-like model of infection. Finally, we demonstrated serial genome writing by humanizing mouse Tmprss2 biallelically in the ACE2 GREAT-GEMM, highlighting the versatility of mSwAP-In in genome writing.
0
Paper
Citation6
0
Save
1

Topoisomerase 1 inhibition therapy protects against SARS-CoV-2-induced inflammation and death in animal models

Jessica Ho et al.Oct 24, 2023
+48
L
B
J
SUMMARY The ongoing pandemic caused by Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) is currently affecting millions of lives worldwide. Large retrospective studies indicate that an elevated level of inflammatory cytokines and pro-inflammatory factors are associated with both increased disease severity and mortality. Here, using multidimensional epigenetic, transcriptional, in vitro and in vivo analyses, we report that Topoisomerase 1 (Top1) inhibition suppresses lethal inflammation induced by SARS-CoV-2. Therapeutic treatment with two doses of Topotecan (TPT), a FDA-approved Top1 inhibitor, suppresses infection-induced inflammation in hamsters. TPT treatment as late as four days post-infection reduces morbidity and rescues mortality in a transgenic mouse model. These results support the potential of Top1 inhibition as an effective host-directed therapy against severe SARS-CoV-2 infection. TPT and its derivatives are inexpensive clinical-grade inhibitors available in most countries. Clinical trials are needed to evaluate the efficacy of repurposing Top1 inhibitors for COVID-19 in humans.
1
Citation5
0
Save
1

Stress granules are shock absorbers that prevent excessive innate immune responses to dsRNA

Max Paget et al.Oct 24, 2023
+9
S
C
M
Summary Proper defense against microbial infection depends on the controlled activation of the immune system. This is particularly important for the RIG-I-like receptors (RLRs), which recognize viral dsRNA and initiate antiviral innate immune responses with the potential of triggering systemic inflammation and immunopathology. Here we show that stress granules (SGs), molecular condensates that form in response to various stresses including viral dsRNA, play key roles in controlled activation of RLR signaling. Without the SG nucleators G3BP1/2 and UBAP2L, dsRNA triggers excessive inflammation and immune-mediated apoptosis. In addition to exogenous dsRNA, we find that host-derived dsRNA generated in response to ADAR1 deficiency is also controlled by SG biology. Intriguingly, SGs can function beyond immune control by suppressing viral replication independent of the RLR pathway. These observations thus highlight the multi-functional nature of SGs as cellular “shock absorbers” that converge on protecting cell homeostasis–by dampening both toxic immune response and viral replication.
1
Citation5
0
Save
0

The host factor ANP32A is required for influenza A virus vRNA and cRNA synthesis

Benjamin Nilsson-Payant et al.May 30, 2024
A
B
B
ABSTRACT Influenza A viruses are negative-sense RNA viruses that rely on their own viral replication machinery to replicate and transcribe their segmented single-stranded RNA genome. The viral ribonucleoprotein complexes in which viral RNA is replicated consist of a nucleoprotein scaffold around which the RNA genome is bound, and a heterotrimeric RNA-dependent RNA polymerase that catalyzes viral replication. The RNA polymerase copies the viral RNA (vRNA) via a replicative intermediate, called the complementary RNA (cRNA), and subsequently uses this cRNA to make more vRNA copies. To ensure that new cRNA and vRNA molecules are associated with ribonucleoproteins in which they can be amplified, the active RNA polymerase recruits a second polymerase to encapsidate the cRNA or vRNA. Host factor ANP32A has been shown to be essential for viral replication and to facilitate the formation of a dimer between viral RNA polymerases and differences between mammalian and avian ANP32A proteins are sufficient to restrict viral replication. It has been proposed that ANP32A is only required for the synthesis of vRNA molecules from a cRNA, but not vice versa. However, this view does not match recent molecular evidence. Here we use minigenome assays, virus infections, and viral promoter mutations to demonstrate that ANP32A is essential for both vRNA and cRNA synthesis. Moreover, we show that ANP32 is not only needed for the actively replicating polymerase, but also for the polymerase that is encapsidating nascent viral RNA products. Overall, these results provide new insights into influenza A virus replication and host adaptation. IMPORTANCE Zoonotic avian influenza A viruses pose a constant threat to global health and they have the potential to cause highly pathogenic pandemic outbreaks. Species variations in host factor ANP32A play a key role in supporting the activity of avian influenza A virus RNA polymerases in mammalian hosts. Here we show that ANP32A acts at two stages in the influenza A virus replication cycle, supporting recent structural experiments and in line with its essential role. Understanding how ANP32A supports viral RNA polymerase activity and how it supports avian polymerase function in mammalian hosts is important for understanding influenza A virus replication and the development of antiviral strategies against influenza A viruses.
0
Citation4
0
Save
11

Mouse genomic rewriting and tailoring: synthetic Trp53 and humanized ACE2

Weimin Zhang et al.Oct 24, 2023
+13
R
I
W
Abstract Genetically Engineered Mouse Models (GEMMs) aid in understanding human pathologies and developing new therapeutics, yet recapitulating human diseases authentically in mice is challenging to design and execute. Advances in genomics have highlighted the importance of non-coding regulatory genome sequences controlling spatiotemporal gene expression patterns and splicing to human diseases. It is thus apparent that including regulatory genomic regions during the engineering of GEMMs is highly preferable for disease modeling, with the prerequisite of large-scale genome engineering ability. Existing genome engineering methods have limits on the size and efficiency of DNA delivery, hampering routine creation of highly informative GEMMs. Here, we describe mSwAP-In ( m ammalian Sw itching A ntibiotic resistance markers P rogressively for In tegration), a method for efficient genome rewriting in mouse embryonic stem cells. We first demonstrated the use of mSwAP-In for iterative genome rewriting of up to 115 kb of the Trp53 locus, as well as for genomic humanization of up to 180 kb ACE2 locus in response to the COVID-19 pandemic. Second, we showed the hACE2 GEMM authentically recapitulated human ACE2 expression patterns and splicing, and importantly, presented milder symptoms without mortality when challenged with SARS-CoV-2 compared to the K18-ACE2 model, thus representing a more authentic model of infection.
11
Citation4
0
Save
Load More