JH
Jan Haarst
Author with expertise in RNA Sequencing Data Analysis
Achievements
Open Access Advocate
Cited Author
Key Stats
Upvotes received:
0
Publications:
4
(75% Open Access)
Cited by:
579
h-index:
9
/
i10-index:
9
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Exploring genetic variation in the tomato (Solanum section Lycopersicon) clade by whole‐genome sequencing

Saulo Aflitos et al.Jul 15, 2014
Summary We explored genetic variation by sequencing a selection of 84 tomato accessions and related wild species representative of the Lycopersicon , Arcanum , Eriopersicon and Neolycopersicon groups, which has yielded a huge amount of precious data on sequence diversity in the tomato clade. Three new reference genomes were reconstructed to support our comparative genome analyses. Comparative sequence alignment revealed group‐, species‐ and accession‐specific polymorphisms, explaining characteristic fruit traits and growth habits in the various cultivars. Using gene models from the annotated Heinz 1706 reference genome, we observed differences in the ratio between non‐synonymous and synonymous SNPs (dN/dS) in fruit diversification and plant growth genes compared to a random set of genes, indicating positive selection and differences in selection pressure between crop accessions and wild species. In wild species, the number of single‐nucleotide polymorphisms (SNPs) exceeds 10 million, i.e. 20‐fold higher than found in most of the crop accessions, indicating dramatic genetic erosion of crop and heirloom tomatoes. In addition, the highest levels of heterozygosity were found for allogamous self‐incompatible wild species, while facultative and autogamous self‐compatible species display a lower heterozygosity level. Using whole‐genome SNP information for maximum‐likelihood analysis, we achieved complete tree resolution, whereas maximum‐likelihood trees based on SNPs from ten fruit and growth genes show incomplete resolution for the crop accessions, partly due to the effect of heterozygous SNPs. Finally, results suggest that phylogenetic relationships are correlated with habitat, indicating the occurrence of geographical races within these groups, which is of practical importance for Solanum genome evolution studies.
0
Citation355
0
Save
0

Identification of microRNA targets in tomato fruit development using high-throughput sequencing and degradome analysis

Rumyana Karlova et al.Mar 13, 2013
MicroRNAs (miRNAs) play important roles in plant development through regulation of gene expression by mRNA degradation or translational inhibition. Despite the fact that tomato (Solanum lycopersicum) is the model system for studying fleshy fruit development and ripening, only a few experimentally proven miRNA targets are known, and the role of miRNA action in these processes remains largely unknown. Here, by using parallel analysis of RNA ends (PARE) for global identification of miRNA targets and comparing four different stages of tomato fruit development, a total of 119 target genes of miRNAs were identified. Of these, 106 appeared to be new targets. A large part of the identified targets (56) coded for transcription factors. Auxin response factors, as well as two known ripening regulators, colorless non-ripening (CNR) and APETALA2a (SlAP2a), with developmentally regulated degradation patterns were identified. The levels of the intact messenger of both CNR and AP2a are actively modulated during ripening, by miR156/157 and miR172, respectively. Additionally, two TAS3-mRNA loci were identified as targets of miR390. Other targets such as Argonaute 1 (AGO1), shown to be involved in miRNA biogenesis in other plant species, were identified, which suggests a feedback loop regulation of this process. In this study, it is shown that miRNA-guided cleavage of mRNAs is likely to play an important role in tomato fruit development and ripening.
0
Citation220
0
Save
1

The genome of Gynandropsis gynandra provides insights into whole-genome duplications and the evolution of C4 photosynthesis in Cleomaceae

Nam Hoang et al.Jul 10, 2022
ABSTRACT Gynandropsis gynandra (Cleomaceae) is a cosmopolitan leafy vegetable and medicinal plant, which has also been used as a model to study C4 photosynthesis due to its evolutionary proximity to Arabidopsis. Here, we present a high-quality genome sequence of G. gynandra , anchored onto 17 main super- scaffolds with a total length of 740 Mb, an N50 of 42 Mb and 30,933 well-supported gene models. The G. gynandra genome and previously released genomes of C3 relatives in the Cleomaceae and Brassicaceae make an excellent model for studying the role of genome evolution in the transition from C3 to C4 photosynthesis. We revealed that G. gynandra and its C3 relative Tarenaya hassleriana shared a whole-genome duplication event ( Gg-α ), then an addition of a third genome ( Th-α, +1x) took place in T. hassleriana but not in G. gynandra . Analysis of syntenic copy number of C4 photosynthesis-related gene families indicates that G. gynandra generally retained more duplicated copies of these genes than C3 T. hassleriana , and also that the G. gynandra C4 genes might have been under positive selection pressure. Both whole-genome and single-gene duplication were found to contribute to the expansion of the aforementioned gene families in G. gynandra . Collectively, this study enhances our understanding of the impact of gene duplication and gene retention on the evolution of C4 photosynthesis in Cleomaceae.
1
Citation4
0
Save
0

An improved de novo assembly and annotation of the tomato reference genome using single-molecule sequencing, Hi-C proximity ligation and optical maps

Prashant Hosmani et al.Sep 14, 2019
The original Heinz 1706 reference genome was produced by a large team of scientists from across the globe from a variety of input sources that included 454 sequences in addition to full-length BACs, BAC and fosmid ends sequenced with Sanger technology. We present here the latest tomato reference genome (SL4.0) assembled de novo from PacBio long reads and scaffolded using Hi-C contact maps. The assembly was validated using Bionano optical maps and 10X linked-read sequences. This assembly is highly contiguous with fewer gaps compared to previous genome builds and almost all scaffolds have been anchored and oriented to the 12 tomato chromosomes. We have found more repeats compared to the previous versions and one of the largest repeat classes identified are the LTR retrotransposons. We also describe updates to the reference genome and annotation since the last publication. The corresponding ITAG4.0 annotation has 4,794 novel genes along with 29,281 genes preserved from ITAG2.4. Most of the updated genes have extensions in the 5' and 3' UTRs resulting in doubling of annotated UTRs per gene. The genome and annotation can be accessed using SGN through BLAST database, Pathway database (SolCyc), Apollo, JBrowse genome browser and FTP available at https://solgenomics.net.