RT
Raúl Torres
Author with expertise in Genomic Studies and Association Analyses
Tempus Labs (United States), Spanish National Cancer Research Centre, Centro de Investigación Biomédica en Red
+ 7 more
Achievements
This user has not unlocked any achievements yet.
Key Stats
Upvotes received:
0
Publications:
6
(0% Open Access)
Cited by:
0
h-index:
12
/
i10-index:
16
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Sequencing of 53,831 diverse genomes from the NHLBI TOPMed Program

Daniel Taliun et al.May 6, 2020
+174
M
D
D
The Trans-Omics for Precision Medicine (TOPMed) program seeks to elucidate the genetic architecture and disease biology of heart, lung, blood, and sleep disorders, with the ultimate goal of improving diagnosis, treatment, and prevention. The initial phases of the program focus on whole genome sequencing of individuals with rich phenotypic data and diverse backgrounds. Here, we describe TOPMed goals and design as well as resources and early insights from the sequence data. The resources include a variant browser, a genotype imputation panel, and sharing of genomic and phenotypic data via dbGaP. In 53,581 TOPMed samples, >400 million single-nucleotide and insertion/deletion variants were detected by alignment with the reference genome. Additional novel variants are detectable through assembly of unmapped reads and customized analysis in highly variable loci. Among the >400 million variants detected, 97% have frequency <1% and 46% are singletons. These rare variants provide insights into mutational processes and recent human evolutionary history. The nearly complete catalog of genetic variation in TOPMed studies provides unique opportunities for exploring the contributions of rare and non-coding sequence variants to phenotypic variation. Furthermore, combining TOPMed haplotypes with modern imputation methods improves the power and extends the reach of nearly all genome-wide association studies to include variants down to ~0.01% in frequency.
0

The temporal dynamics of background selection in non-equilibrium populations

Raúl Torres et al.May 6, 2020
J
R
M
R
Neutral genetic diversity across the genome is determined by the complex interplay of mutation, demographic history, and natural selection. While the direct action of natural selection is limited to functional loci across the genome, its impact can have effects on nearby neutral loci due to genetic linkage. These effects of selection at linked sites, referred to as genetic hitchhiking and background selection (BGS), are pervasive across natural populations. However, only recently has there been a focus on the joint consequences of demography and selection at linked sites, and empirical studies have sometimes come to apparently contradictory conclusions as to their combined effects. In order to understand the relationship between demography and selection at linked sites, we conducted an extensive forward simulation study of BGS under a range of demographic models. We found that the relative levels of diversity in BGS and neutral regions vary over time and that the initial dynamics after a population size change are often in the opposite direction of the long-term expected trajectory. Our detailed observations of the temporal dynamics of neutral diversity in the context of selection at linked sites in non-equilibrium populations provides new intuition about why patterns of diversity under BGS vary through time in natural populations and help reconcile previously contradictory observations. Most notably, our results highlight that classical models of BGS are poorly suited for predicting diversity in non-equilibrium populations.
0

Human demographic history has amplified the effects of background selection across the genome

Raúl Torres et al.May 6, 2020
R
Z
R
Natural populations often grow, shrink, and migrate over time. Demographic processes such as these can impact genome-wide levels of genetic diversity. In addition, genetic variation in functional regions of the genome can be altered by natural selection, which drives adaptive mutations to higher frequencies or purges deleterious ones. Such selective processes impact not only the sites directly under selection but also nearby neutral variation through genetic linkage through processes referred to as genetic hitchhiking in the context of positive selection and background selection (BGS) in the context of purifying selection. While there is extensive literature examining the impact of selection at linked sites at demographic equilibrium, less is known about how non-equilibrium demographic processes impact the effects of hitchhiking and BGS. Utilizing a global sample of human whole-genome sequences from the Thousand Genomes Project and extensive simulations, we investigate how non-equilibrium demographic processes magnify and dampen the consequences of selection at linked sites across the human genome. When binning the genome by inferred strength of BGS, we observe that, compared to Africans, non-African populations have experienced larger proportional decreases in neutral genetic diversity in such regions. We replicate these findings in admixed populations by showing that non-African ancestral components of the genome have also been impacted more severely in these regions. We attribute these differences to the strong, sustained/recurrent population bottlenecks that non-Africans experienced as they migrated out of Africa and throughout the globe. Furthermore, we observe a strong correlation between FST and inferred strength of BGS, suggesting a stronger rate of genetic drift. Forward simulations of human demographic history with a model of BGS support these observations. Our results show that non-equilibrium demography significantly alters the consequences selection at linked sites and support the need for more work investigating the dynamic process of multiple evolutionary forces operating in concert.
0

Comparing multi- and single-sample variant calls to improve variant call sets from deep coverage whole-genome sequencing data

Suyash Shringarpure et al.May 7, 2020
+7
R
R
S
Motivation: Variant calling from next-generation sequencing (NGS) data is susceptible to false positive calls due to sequencing, mapping and other errors. To better distinguish true from false positive calls, we present a method that uses genotype array data from the sequenced samples, rather than public data such as HapMap or dbSNP, to train an accurate classifier using Random Forests. We demonstrate our method on a set of variant calls obtained from 642 African-ancestry genomes from the The Consortium on Asthma among African-ancestry Populations in the Americas (CAAPA), sequenced to high depth (~30X). Results: We have applied our classifier to compare call sets generated with different calling methods, including both single-sample and multi-sample callers. At a False Positive Rate of 5%, our method determines true positive rates of 97.5%, 95% and 99% on variant calls obtained using Illumina's single-sample caller CASAVA, Real Time Genomics' multisample variant caller, and the GATK Unified Genotyper, respectively. Since most NGS sequencing data is accompanied by genotype data for the same samples, our method can be trained on each dataset to provide a more accurate computational validation of site calls compared to generic methods. Moreover, our method allows for adjustment based on allele frequency (e.g., a different set of criteria to determine quality for rare vs. common variants) and thereby provides insight into sequencing characteristics that indicate data quality for variants of different frequencies. Availability: Code will be made available prior to publication on Github.
0

Genome-wide association study of asthma in individuals of African ancestry reveals novel asthma susceptibility loci

Michelle Daya et al.May 7, 2020
+97
S
N
M
BACKGROUND: Asthma is a complex disease with striking disparities across racial and ethnic groups, which may be partly attributable to genetic factors. One of the main goals of the Consortium on Asthma among African-ancestry Populations in the Americas (CAAPA) is to discover genes conferring risk to asthma in populations of African descent. METHODS: We performed a genome-wide meta-analysis of asthma across 11 CAAPA datasets (4,827 asthma cases and 5,397 controls), genotyped on the African Diaspora Power Chip (ADPC) and including existing GWAS array data. The genotype data were imputed up to a whole genome sequence reference panel from n=880 African ancestry individuals for a total of 61,904,576 SNPs. Statistical models appropriate to each study design were used to test for association, and results were combined using the weighted Z-score method. We also used admixture mapping as a complementary approach to identify loci involved in asthma pathogenesis in subjects of African ancestry. RESULTS: SNPs rs787160 and rs17834780 on chromosome 2q22·3 were significantly associated with asthma (p=6 ·57×10−9 and 2·97 × 10−8 respectively). These SNPs lie in the intergenic region between the Rho GTPase Activating Protein 15 (ARHGAP15) and Glycosyltransferase Like Domain Containing 1 (GTDC1) genes. Four low frequency variants on chromosome 1q21.3, which may be involved in the "atopic march" and which are not polymorphic in Europeans, also showed evidence for association with asthma (1·18 × 10−6 ≤p≤3·06 ×10 −6). SNP rs11264909 on chromosome 1q23·1, close to a region previously identified by the EVE asthma meta-analysis as having a putative African ancestry specific effect, only showed differences in counts in subjects homozygous for alleles of African ancestry. Admixture mapping also identified a significantly associated region on chromosome 6q23·2, which includes the Transcription Factor 21 (TCF21) gene, previously shown to be differentially expressed in bronchial tissues of asthmatics and non-asthmatics. CONCLUSIONS: We have identified a number of novel asthma association signals warranting further investigation.
0

In vitro and In vivo Genetic Disease Modelling via NHEJ precise deletions using CRISPR/Cas9

Sergio López-Manzaneda et al.May 7, 2020
+11
N
I
S
Development of advanced gene and cell therapies for the treatment of genetic diseases requires confident animal and cellular models to test their efficacy and is crucial in the cases where no primary samples from patients are available. CRISPR/Cas9 technology, has become one of the most spread endonuclease tools for editing the genome at will. Moreover, it is known that the use of two guides tends to produce the precise deletion between the guides via NHEJ. Different distances between guides were tested (from 8 to 500 base pairs). We found that distances between the two cutting sites and orientation of Cas9 protein-DNA interaction are important for the efficiency within the optimal range (30-60 bp), we could obtain new genetically reproducible models for two rare disease, a Pyruvate Kinase Deficiency model, using human primary cells, and a (for in vivo primary hyperoxaluria therapeutic mouse model. We demonstrate that the use of a 2-guideRNAs at the optimal distance and orientation is a powerful strategy for disease modelling in those diseases where the availability of primary cells is limited.
0
0
Save