YC
Yii‐Der Chen
Author with expertise in Genomic Studies and Association Analyses
Achievements
Cited Author
Key Stats
Upvotes received:
0
Publications:
33
(45% Open Access)
Cited by:
2,669
h-index:
48
/
i10-index:
113
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
1

Sequencing of 53,831 diverse genomes from the NHLBI TOPMed Program

Daniel Taliun et al.Feb 10, 2021
+97
M
D
D
Abstract The Trans-Omics for Precision Medicine (TOPMed) programme seeks to elucidate the genetic architecture and biology of heart, lung, blood and sleep disorders, with the ultimate goal of improving diagnosis, treatment and prevention of these diseases. The initial phases of the programme focused on whole-genome sequencing of individuals with rich phenotypic data and diverse backgrounds. Here we describe the TOPMed goals and design as well as the available resources and early insights obtained from the sequence data. The resources include a variant browser, a genotype imputation server, and genomic and phenotypic data that are available through dbGaP (Database of Genotypes and Phenotypes) 1 . In the first 53,831 TOPMed samples, we detected more than 400 million single-nucleotide and insertion or deletion variants after alignment with the reference genome. Additional previously undescribed variants were detected through assembly of unmapped reads and customized analysis in highly variable loci. Among the more than 400 million detected variants, 97% have frequencies of less than 1% and 46% are singletons that are present in only one individual (53% among unrelated individuals). These rare variants provide insights into mutational processes and recent human evolutionary history. The extensive catalogue of genetic variation in TOPMed studies provides unique opportunities for exploring the contributions of rare and noncoding sequence variants to phenotypic variation. Furthermore, combining TOPMed haplotypes with modern imputation methods improves the power and reach of genome-wide association studies to include variants down to a frequency of approximately 0.01%.
1
Citation1,370
0
Save
0

Measurement of Plasma Glucose, Free Fatty Acid, Lactate, and Insulin for 24 h in Patients With NIDDM

Gerald Reaven et al.Aug 1, 1988
+2
C
C
G
Fasting and postprandial plasma glucose, free fatty acid (FFA), lactate, and insulin concentrations were measured at hourly intervals for 24 h in 27 nonobese individuals-9 with normal glucose tolerance, 9 with mild non-insulin-dependent diabetes mellitus (NIDDM, fasting plasma glucose less than 175 mg/dl), and 9 with severe NIDDM (fasting plasma glucose greater than 250 mg/dl). In addition, hepatic glucose production (HGP) was measured from midnight to 0800 in normal individuals and patients with severe NIDDM. Plasma glucose concentration was highest in patients with severe NIDDM, lowest in those with normal glucose tolerance, and intermediate in those with mild NIDDM (two-way ANOVA, P less than .001). Variations in plasma FFA and lactate levels of the three groups were qualitatively similar, with lowest concentrations seen in normal individuals, intermediate levels in the group with mild NIDDM, and the highest concentration in those with severe NIDDM (two-way ANOVA, P less than .001). Of particular interest was the observation that plasma FFA concentrations were dramatically elevated from midnight to 0800 in patients with severe NIDDM. The 24-h insulin response was significantly increased in patients with mild NIDDM, with comparable values seen in the other two groups. Values for HGP fell progressively throughout the night in normal individuals and patients with severe NIDDM, despite a concomitant decline in plasma glucose and insulin levels. Although the magnitude of the fall in HGP was greater in NIDDM, the absolute value was significantly (P less than .001) greater than normal throughout the period of observation.(ABSTRACT TRUNCATED AT 250 WORDS)
0

Exome-wide association study of plasma lipids in >300,000 individuals

Dajiang Liu et al.Oct 30, 2017
+97
H
G
D
We screened variants on an exome-focused genotyping array in >300,000 participants (replication in >280,000 participants) and identified 444 independent variants in 250 loci significantly associated with total cholesterol (TC), high-density-lipoprotein cholesterol (HDL-C), low-density-lipoprotein cholesterol (LDL-C), and/or triglycerides (TG). At two loci (JAK2 and A1CF), experimental analysis in mice showed lipid changes consistent with the human data. We also found that: (i) beta-thalassemia trait carriers displayed lower TC and were protected from coronary artery disease (CAD); (ii) excluding the CETP locus, there was not a predictable relationship between plasma HDL-C and risk for age-related macular degeneration; (iii) only some mechanisms of lowering LDL-C appeared to increase risk for type 2 diabetes (T2D); and (iv) TG-lowering alleles involved in hepatic production of TG-rich lipoproteins (TM6SF2 and PNPLA3) tracked with higher liver fat, higher risk for T2D, and lower risk for CAD, whereas TG-lowering alleles involved in peripheral lipolysis (LPL and ANGPTL4) had no effect on liver fat but decreased risks for both T2D and CAD.
0
Citation497
0
Save
0

Quality of dietary fat and genetic risk of type 2 diabetes: individual participant data meta-analysis

Jordi Merino et al.Jul 25, 2019
+65
C
M
J
To investigate whether the genetic burden of type 2 diabetes modifies the association between the quality of dietary fat and the incidence of type 2 diabetes.Individual participant data meta-analysis.Eligible prospective cohort studies were systematically sourced from studies published between January 1970 and February 2017 through electronic searches in major medical databases (Medline, Embase, and Scopus) and discussion with investigators.Data from cohort studies or multicohort consortia with available genome-wide genetic data and information about the quality of dietary fat and the incidence of type 2 diabetes in participants of European descent was sought. Prospective cohorts that had accrued five or more years of follow-up were included. The type 2 diabetes genetic risk profile was characterized by a 68-variant polygenic risk score weighted by published effect sizes. Diet was recorded by using validated cohort-specific dietary assessment tools. Outcome measures were summary adjusted hazard ratios of incident type 2 diabetes for polygenic risk score, isocaloric replacement of carbohydrate (refined starch and sugars) with types of fat, and the interaction of types of fat with polygenic risk score.Of 102 305 participants from 15 prospective cohort studies, 20 015 type 2 diabetes cases were documented after a median follow-up of 12 years (interquartile range 9.4-14.2). The hazard ratio of type 2 diabetes per increment of 10 risk alleles in the polygenic risk score was 1.64 (95% confidence interval 1.54 to 1.75, I2=7.1%, τ2=0.003). The increase of polyunsaturated fat and total omega 6 polyunsaturated fat intake in place of carbohydrate was associated with a lower risk of type 2 diabetes, with hazard ratios of 0.90 (0.82 to 0.98, I2=18.0%, τ2=0.006; per 5% of energy) and 0.99 (0.97 to 1.00, I2=58.8%, τ2=0.001; per increment of 1 g/d), respectively. Increasing monounsaturated fat in place of carbohydrate was associated with a higher risk of type 2 diabetes (hazard ratio 1.10, 95% confidence interval 1.01 to 1.19, I2=25.9%, τ2=0.006; per 5% of energy). Evidence of small study effects was detected for the overall association of polyunsaturated fat with the risk of type 2 diabetes, but not for the omega 6 polyunsaturated fat and monounsaturated fat associations. Significant interactions between dietary fat and polygenic risk score on the risk of type 2 diabetes (P>0.05 for interaction) were not observed.These data indicate that genetic burden and the quality of dietary fat are each associated with the incidence of type 2 diabetes. The findings do not support tailoring recommendations on the quality of dietary fat to individual type 2 diabetes genetic risk profiles for the primary prevention of type 2 diabetes, and suggest that dietary fat is associated with the risk of type 2 diabetes across the spectrum of type 2 diabetes genetic risk.
0
Citation36
0
Save
3

A Saturated Map of Common Genetic Variants Associated with Human Height from 5.4 Million Individuals of Diverse Ancestries

Loïc Yengo et al.Jan 10, 2022
+569
C
T
L
ABSTRACT Common SNPs are predicted to collectively explain 40-50% of phenotypic variation in human height, but identifying the specific variants and associated regions requires huge sample sizes. Here we show, using GWAS data from 5.4 million individuals of diverse ancestries, that 12,111 independent SNPs that are significantly associated with height account for nearly all of the common SNP-based heritability. These SNPs are clustered within 7,209 non-overlapping genomic segments with a median size of ~90 kb, covering ~21% of the genome. The density of independent associations varies across the genome and the regions of elevated density are enriched for biologically relevant genes. In out-of-sample estimation and prediction, the 12,111 SNPs account for 40% of phenotypic variance in European ancestry populations but only ~10%-20% in other ancestries. Effect sizes, associated regions, and gene prioritization are similar across ancestries, indicating that reduced prediction accuracy is likely explained by linkage disequilibrium and allele frequency differences within associated regions. Finally, we show that the relevant biological pathways are detectable with smaller sample sizes than needed to implicate causal genes and variants. Overall, this study, the largest GWAS to date, provides an unprecedented saturated map of specific genomic regions containing the vast majority of common height-associated variants.
3
Citation16
0
Save
0

Tissue-Specific Alteration of Metabolic Pathways Influences Glycemic Regulation

Natasha Ng et al.Oct 3, 2019
+260
J
S
N
Summary Metabolic dysregulation in multiple tissues alters glucose homeostasis and influences risk for type 2 diabetes (T2D). To identify pathways and tissues influencing T2D-relevant glycemic traits (fasting glucose [FG], fasting insulin [FI], two-hour glucose [2hGlu] and glycated hemoglobin [HbA1c]), we investigated associations of exome-array variants in up to 144,060 individuals without diabetes of multiple ancestries. Single-variant analyses identified novel associations at 21 coding variants in 18 novel loci, whilst gene-based tests revealed signals at two genes, TF (HbA1c) and G6PC (FG, FI). Pathway and tissue enrichment analyses of trait-associated transcripts confirmed the importance of liver and kidney for FI and pancreatic islets for FG regulation, implicated adipose tissue in FI and the gut in 2hGlu, and suggested a role for the non-endocrine pancreas in glucose homeostasis. Functional studies demonstrated that a novel FG/FI association at the liver-enriched G6PC transcript was driven by multiple rare loss-of-function variants. The FG/HbA1c-associated, islet-specific G6PC2 transcript also contained multiple rare functional variants, including two alleles within the same codon with divergent effects on glucose levels. Our findings highlight the value of integrating genomic and functional data to maximize biological inference. Highlights 23 novel coding variant associations (single-point and gene-based) for glycemic traits 51 effector transcripts highlighted different pathway/tissue signatures for each trait The exocrine pancreas and gut influence fasting and 2h glucose, respectively Multiple variants in liver-enriched G6PC and islet-specific G6PC2 influence glycemia
0
Citation11
0
Save
0

The Trans-Ancestral Genomic Architecture of Glycaemic Traits

Ji Chen et al.Jul 25, 2020
+411
J
T
J
Abstract Glycaemic traits are used to diagnose and monitor type 2 diabetes, and cardiometabolic health. To date, most genetic studies of glycaemic traits have focused on individuals of European ancestry. Here, we aggregated genome-wide association studies in up to 281,416 individuals without diabetes (30% non-European ancestry) with fasting glucose, 2h-glucose post-challenge, glycated haemoglobin, and fasting insulin data. Trans-ancestry and single-ancestry meta-analyses identified 242 loci (99 novel; P <5×10 -8 ), 80% with no significant evidence of between-ancestry heterogeneity. Analyses restricted to European ancestry individuals with equivalent sample size would have led to 24 fewer new loci. Compared to single-ancestry, equivalent sized trans-ancestry fine-mapping reduced the number of estimated variants in 99% credible sets by a median of 37.5%. Genomic feature, gene-expression and gene-set analyses revealed distinct biological signatures for each trait, highlighting different underlying biological pathways. Our results increase understanding of diabetes pathophysiology by use of trans-ancestry studies for improved power and resolution.
0
Citation10
0
Save
1

Clonal hematopoiesis is driven by aberrant activation of TCL1A

Joshua Weinstock et al.Dec 13, 2021
+109
A
N
J
Abstract A diverse set of driver genes, such as regulators of DNA methylation, RNA splicing, and chromatin remodeling, have been associated with pre-malignant clonal expansion of hematopoietic stem cells (HSCs). The factors mediating expansion of these mutant clones remain largely unknown, partially due to a paucity of large cohorts with longitudinal blood sampling. To circumvent this limitation, we developed and validated a method to infer clonal expansion rate from single timepoint data called PACER (passenger-approximated clonal expansion rate). Applying PACER to 5,071 persons with clonal hematopoiesis accurately recapitulated the known fitness effects due to different driver mutations. A genome-wide association study of PACER revealed that a common inherited polymorphism in the TCL1A promoter was associated with slower clonal expansion. Those carrying two copies of this protective allele had up to 80% reduced odds of having driver mutations in TET2, ASXL1, SF3B1, SRSF2 , and JAK2 , but not DNMT3A. TCL1A was not expressed in normal or DNMT3A -mutated HSCs, but the introduction of mutations in TET2 or ASXL1 by CRISPR editing led to aberrant expression of TCL1A and expansion of HSCs in vitro. These effects were abrogated in HSCs from donors carrying the protective TCL1A allele. Our results indicate that the fitness advantage of multiple common driver genes in clonal hematopoiesis is mediated through TCL1A activation. PACER is an approach that can be widely applied to uncover genetic and environmental determinants of pre-malignant clonal expansion in blood and other tissues.
1
Citation9
0
Save
1

Structural variation across 138,134 samples in the TOPMed consortium

Goo Jun et al.Jan 26, 2023
+87
M
A
G
Ever larger Structural Variant (SV) catalogs highlighting the diversity within and between populations help researchers better understand the links between SVs and disease. The identification of SVs from DNA sequence data is non-trivial and requires a balance between comprehensiveness and precision. Here we present a catalog of 355,667 SVs (59.34% novel) across autosomes and the X chromosome (50bp+) from 138,134 individuals in the diverse TOPMed consortium. We describe our methodologies for SV inference resulting in high variant quality and >90% allele concordance compared to long-read de-novo assemblies of well-characterized control samples. We demonstrate utility through significant associations between SVs and important various cardio-metabolic and hemotologic traits. We have identified 690 SV hotspots and deserts and those that potentially impact the regulation of medically relevant genes. This catalog characterizes SVs across multiple populations and will serve as a valuable tool to understand the impact of SV on disease development and progression.
1
Citation3
0
Save
0

Multi-ethnic genome-wide association study of decomposed cardioelectric phenotypes illustrates strategies to identify and characterize evidence of shared genetic effects for complex traits

Antoine Baldassari et al.May 31, 2019
+31
H
C
A
ABSTRACT Background Published genome-wide association studies (GWAS) are mainly European-centric, examine a narrow view of phenotypic variation, and infrequently interrogate genetic effects shared across traits. We therefore examined the extent to which a multi-ethnic, combined trait GWAS of phenotypes that map to well-defined biology can enable detection and characterization of complex trait loci. Methods With 1000 Genomes Phase 3 imputed data in 34,668 participants (15% African American; 3% Chinese American; 51% European American; 30% Hispanic/Latino), we performed covariate-adjusted univariate GWAS of six contiguous electrocardiogram (ECG) traits that decomposed an average heartbeat and two commonly reported composite ECG traits that summed contiguous traits. Combined phenotype testing was performed using the adaptive sum of powered scores test (aSPU). Results We identified six novel and 87 known ECG trait loci (aSPU p-value < 5E-9). Lead SNP rs3211938 at novel locus CD36 was common in African Americans (minor allele frequency=10%) and near-monomorphic in European Americans, with effect sizes for the composite trait, QT interval, among the largest reported. Only one novel locus was detected for the composite traits, due to opposite directions of effects across contiguous traits that summed to near-zero. Combined phenotype testing did not detect novel loci unapparent by univariate testing. However, this approach aided locus characterization, particularly when loci harbored multiple independent signals that differed by trait. Conclusions Despite including one-third as few participants as the largest published GWAS of ECG traits, our study identifies multiple novel ECG genetic loci, emphasizing the importance of ancestral diversity and phenotype measurement in this era of ever-growing GWAS. AUTHOR SUMMARY We leveraged a multiethnic cohort with precise measures of cardioelectric function to identify novel genetic loci affecting this complex, multifaceted phenotype. The success of our approach stresses the importance of phenotypic precision and participant diversity for future locus discovery and characterization efforts, and cautions against compromises made in genome-wide association studies to pursue ever-growing sample sizes.
0
Citation2
0
Save
Load More