JC
Joanne Curran
Author with expertise in Genomic Studies and Association Analyses
Achievements
Cited Author
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
38
(61% Open Access)
Cited by:
6,359
h-index:
63
/
i10-index:
219
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
1

Sequencing of 53,831 diverse genomes from the NHLBI TOPMed Program

Daniel Taliun et al.Feb 10, 2021
Abstract The Trans-Omics for Precision Medicine (TOPMed) programme seeks to elucidate the genetic architecture and biology of heart, lung, blood and sleep disorders, with the ultimate goal of improving diagnosis, treatment and prevention of these diseases. The initial phases of the programme focused on whole-genome sequencing of individuals with rich phenotypic data and diverse backgrounds. Here we describe the TOPMed goals and design as well as the available resources and early insights obtained from the sequence data. The resources include a variant browser, a genotype imputation server, and genomic and phenotypic data that are available through dbGaP (Database of Genotypes and Phenotypes) 1 . In the first 53,831 TOPMed samples, we detected more than 400 million single-nucleotide and insertion or deletion variants after alignment with the reference genome. Additional previously undescribed variants were detected through assembly of unmapped reads and customized analysis in highly variable loci. Among the more than 400 million detected variants, 97% have frequencies of less than 1% and 46% are singletons that are present in only one individual (53% among unrelated individuals). These rare variants provide insights into mutational processes and recent human evolutionary history. The extensive catalogue of genetic variation in TOPMed studies provides unique opportunities for exploring the contributions of rare and noncoding sequence variants to phenotypic variation. Furthermore, combining TOPMed haplotypes with modern imputation methods improves the power and reach of genome-wide association studies to include variants down to a frequency of approximately 0.01%.
1
Citation1,370
0
Save
0

Common genetic variants influence human subcortical brain structures

Derrek Hibar et al.Jan 20, 2015
The highly complex structure of the human brain is strongly shaped by genetic influences. Subcortical brain regions form circuits with cortical areas to coordinate movement, learning, memory and motivation, and altered circuits can lead to abnormal behaviour and disease. To investigate how common genetic variants affect the structure of these brain regions, here we conduct genome-wide association studies of the volumes of seven subcortical regions and the intracranial volume derived from magnetic resonance images of 30,717 individuals from 50 cohorts. We identify five novel genetic variants influencing the volumes of the putamen and caudate nucleus. We also find stronger evidence for three loci with previously established influences on hippocampal volume and intracranial volume. These variants show specific volumetric effects on brain structures rather than global effects across structures. The strongest effects were found for the putamen, where a novel intergenic locus with replicable influence on volume (rs945270; P = 1.08 × 10(-33); 0.52% variance explained) showed evidence of altering the expression of the KTN1 gene in both brain and blood tissue. Variants influencing putamen volume clustered near developmental genes that regulate apoptosis, axon guidance and vesicle transport. Identification of these genetic variants provides insight into the causes of variability in human brain development, and may help to determine mechanisms of neuropsychiatric dysfunction.
0
Citation834
0
Save
0

Identification of common variants associated with human hippocampal and intracranial volumes

Jason Stein et al.Apr 15, 2012
Paul Thompson and colleagues report a genome-wide association study for hippocampal, intracranial and total brain volume. They identify a locus at 12q24 associated with hippocampal volume and a locus at 12q14 associated with intracranial volume. Identifying genetic variants influencing human brain structures may reveal new biological mechanisms underlying cognition and neuropsychiatric illness. The volume of the hippocampus is a biomarker of incipient Alzheimer's disease1,2 and is reduced in schizophrenia3, major depression4 and mesial temporal lobe epilepsy5. Whereas many brain imaging phenotypes are highly heritable6,7, identifying and replicating genetic influences has been difficult, as small effects and the high costs of magnetic resonance imaging (MRI) have led to underpowered studies. Here we report genome-wide association meta-analyses and replication for mean bilateral hippocampal, total brain and intracranial volumes from a large multinational consortium. The intergenic variant rs7294919 was associated with hippocampal volume (12q24.22; N = 21,151; P = 6.70 × 10−16) and the expression levels of the positional candidate gene TESC in brain tissue. Additionally, rs10784502, located within HMGA2, was associated with intracranial volume (12q14.3; N = 15,782; P = 1.12 × 10−12). We also identified a suggestive association with total brain volume at rs10494373 within DDR2 (1q23.3; N = 6,500; P = 5.81 × 10−7).
0
Citation625
0
Save
0

Inherited causes of clonal haematopoiesis in 97,691 whole genomes

Alexander Bick et al.Oct 14, 2020
Age is the dominant risk factor for most chronic human diseases, but the mechanisms through which ageing confers this risk are largely unknown1. The age-related acquisition of somatic mutations that lead to clonal expansion in regenerating haematopoietic stem cell populations has recently been associated with both haematological cancer2–4 and coronary heart disease5—this phenomenon is termed clonal haematopoiesis of indeterminate potential (CHIP)6. Simultaneous analyses of germline and somatic whole-genome sequences provide the opportunity to identify root causes of CHIP. Here we analyse high-coverage whole-genome sequences from 97,691 participants of diverse ancestries in the National Heart, Lung, and Blood Institute Trans-omics for Precision Medicine (TOPMed) programme, and identify 4,229 individuals with CHIP. We identify associations with blood cell, lipid and inflammatory traits that are specific to different CHIP driver genes. Association of a genome-wide set of germline genetic variants enabled the identification of three genetic loci associated with CHIP status, including one locus at TET2 that was specific to individuals of African ancestry. In silico-informed in vitro evaluation of the TET2 germline locus enabled the identification of a causal variant that disrupts a TET2 distal enhancer, resulting in increased self-renewal of haematopoietic stem cells. Overall, we observe that germline genetic variation shapes haematopoietic stem cell function, leading to CHIP through mechanisms that are specific to clonal haematopoiesis as well as shared mechanisms that lead to somatic mutations across tissues. Analysis of 97,691 high-coverage human blood DNA-derived whole-genome sequences enabled simultaneous identification of germline and somatic mutations that predispose individuals to clonal expansion of haematopoietic stem cells, indicating that both inherited and acquired mutations are linked to age-related cancers and coronary heart disease.
0
Citation472
0
Save
0

Multi-site genetic analysis of diffusion images and voxelwise heritability analysis: A pilot project of the ENIGMA–DTI working group

Neda Jahanshad et al.Apr 27, 2013
The ENIGMA (Enhancing NeuroImaging Genetics through Meta-Analysis) Consortium was set up to analyze brain measures and genotypes from multiple sites across the world to improve the power to detect genetic variants that influence the brain. Diffusion tensor imaging (DTI) yields quantitative measures sensitive to brain development and degeneration, and some common genetic variants may be associated with white matter integrity or connectivity. DTI measures, such as the fractional anisotropy (FA) of water diffusion, may be useful for identifying genetic variants that influence brain microstructure. However, genome-wide association studies (GWAS) require large populations to obtain sufficient power to detect and replicate significant effects, motivating a multi-site consortium effort. As part of an ENIGMA–DTI working group, we analyzed high-resolution FA images from multiple imaging sites across North America, Australia, and Europe, to address the challenge of harmonizing imaging data collected at multiple sites. Four hundred images of healthy adults aged 18–85 from four sites were used to create a template and corresponding skeletonized FA image as a common reference space. Using twin and pedigree samples of different ethnicities, we used our common template to evaluate the heritability of tract-derived FA measures. We show that our template is reliable for integrating multiple datasets by combining results through meta-analysis and unifying the data through exploratory mega-analyses. Our results may help prioritize regions of the FA map that are consistently influenced by additive genetic factors for future genetic discovery studies. Protocols and templates are publicly available at (http://enigma.loni.ucla.edu/ongoing/dti-working-group/).
0
Citation383
0
Save
0

Genetic variation in selenoprotein S influences inflammatory response

Joanne Curran et al.Oct 9, 2005
Chronic inflammation has a pathological role in many common diseases and is influenced by both genetic and environmental factors. Here we assess the role of genetic variation in selenoprotein S (SEPS1, also called SELS or SELENOS), a gene involved in stress response in the endoplasmic reticulum and inflammation control. After resequencing SEPS1, we genotyped 13 SNPs in 522 individuals from 92 families. As inflammation biomarkers, we measured plasma levels of IL-6, IL-1β and TNF-α. Bayesian quantitative trait nucleotide analysis identified associations between SEPS1 polymorphisms and all three proinflammatory cytokines. One promoter variant, −105G → A, showed strong evidence for an association with each cytokine (multivariate P = 0.0000002). Functional analysis of this polymorphism showed that the A variant significantly impaired SEPS1 expression after exposure to endoplasmic reticulum stress agents (P = 0.00006). Furthermore, suppression of SEPS1 by short interfering RNA in macrophage cells increased the release of IL-6 and TNF-α. To investigate further the significance of the observed associations, we genotyped −105G → A in 419 Mexican American individuals from 23 families for replication. This analysis confirmed a significant association with both TNF-α (P = 0.0049) and IL-1β (P = 0.0101). These results provide a direct mechanistic link between SEPS1 and the production of inflammatory cytokines and suggest that SEPS1 has a role in mediating inflammation.
0
Citation363
0
Save
0

Plasma lipid profiling in a large population-based cohort

Jacquelyn Weir et al.Jul 19, 2013
We have performed plasma lipid profiling using liquid chromatography electrospray ionization tandem mass spectrometry on a population cohort of more than 1,000 individuals. From 10 ¼l of plasma we were able to acquire comparative measures of 312 lipids across 23 lipid classes and subclasses including sphingolipids, phospholipids, glycerolipids, and cholesterol esters (CEs) in 20 min. Using linear and logistic regression, we identified statistically significant associations of lipid classes, subclasses, and individual lipid species with anthropometric and physiological measures. In addition to the expected associations of CEs and triacylglycerol with age, sex, and body mass index (BMI), ceramide was significantly higher in males and was independently associated with age and BMI. Associations were also observed for sphingomyelin with age but this lipid subclass was lower in males. Lysophospholipids were associated with age and higher in males, but showed a strong negative association with BMI. Many of these lipids have previously been associated with chronic diseases including cardiovascular disease and may mediate the interactions of age, sex, and obesity with disease risk. We have performed plasma lipid profiling using liquid chromatography electrospray ionization tandem mass spectrometry on a population cohort of more than 1,000 individuals. From 10 ¼l of plasma we were able to acquire comparative measures of 312 lipids across 23 lipid classes and subclasses including sphingolipids, phospholipids, glycerolipids, and cholesterol esters (CEs) in 20 min. Using linear and logistic regression, we identified statistically significant associations of lipid classes, subclasses, and individual lipid species with anthropometric and physiological measures. In addition to the expected associations of CEs and triacylglycerol with age, sex, and body mass index (BMI), ceramide was significantly higher in males and was independently associated with age and BMI. Associations were also observed for sphingomyelin with age but this lipid subclass was lower in males. Lysophospholipids were associated with age and higher in males, but showed a strong negative association with BMI. Many of these lipids have previously been associated with chronic diseases including cardiovascular disease and may mediate the interactions of age, sex, and obesity with disease risk. Circulating lipids, their biosynthesis, metabolism, and biological functions are intimately involved in many complex disease processes (1Quehenberger O. Dennis E.A. The human plasma lipidome.N. Engl. J. Med. 2011; 365: 1812-1823Crossref PubMed Scopus (305) Google Scholar). Traditional clinical chemistry uses measurements of total cholesterol, triglycerides, and HDL as tools for determining health status and disease risk. The tests for these lipids are low cost, high throughput, and well established. The development of soft ionization techniques, particularly electrospray ionization has proven to be a watershed for lipidomics, allowing the detection and quantification of individual molecular species. Recently, the Lipid Maps Consortium described a detailed analysis of the plasma lipidome, reporting on the concentration of nearly 600 lipids in pooled human plasma from healthy individuals (1Quehenberger O. Dennis E.A. The human plasma lipidome.N. Engl. J. Med. 2011; 365: 1812-1823Crossref PubMed Scopus (305) Google Scholar, 2Quehenberger O. Armando A.M. Brown A.H. Milne S.B. Myers D.S. Merrill A.H. Bandyopadhyay S. Jones K.N. Kelly S. Shaner R.L. et al.Lipidomics reveals a remarkable diversity of lipids in human plasma.J. Lipid Res. 2010; 51: 3299-3305Abstract Full Text Full Text PDF PubMed Scopus (912) Google Scholar). This analysis highlighted the complexity of the plasma lipidome and the potential of plasma lipid profiling for disease classification, risk assessment, and to uncover changes in lipid metabolism associated with disease states. To date, plasma lipid profiling has been used to identify lipidomic biomarkers associated with a variety of diseases and activities related to obesity (3Pietiläinen K.H. Sysi-Aho M. Rissanen A. Seppänen-Laakso T. Yki-Järvinen H. Kaprio J. Oresic M. Acquired obesity is associated with changes in the serum lipidomic profile independent of genetic effects–a monozygotic twin study.PLoS ONE. 2007; 2: e218Crossref PubMed Scopus (328) Google Scholar), hypertension (4Graessler J. Schwudke D. Schwarz P.E. Herzog R. Shevchenko A. Bornstein S.R. Top-down lipidomics reveals ether lipid deficiency in blood plasma of hypertensive patients.PLoS ONE. 2009; 4: e6261Crossref PubMed Scopus (263) Google Scholar), smoking (5Wang-Sattler R. Yu Y. Mittelstrass K. Lattka E. Altmaier E. Gieger C. Ladwig K.H. Dahmen N. Weinberger K.M. Hao P. et al.Metabolic profiling reveals distinct variations linked to nicotine consumption in humans–first results from the KORA study.PLoS ONE. 2008; 3: e3863Crossref PubMed Scopus (95) Google Scholar), cystic fibrosis (6Ollero M. Astarita G. Guerrera I.C. Sermet-Gaudelus I. Trudel S. Piomelli D. Edelman A. Plasma lipidomics reveals potential prognostic signatures within a cohort of cystic fibrosis patients.J. Lipid Res. 2011; 52: 1011-1022Abstract Full Text Full Text PDF PubMed Scopus (53) Google Scholar), weight loss (7Schwab U. Seppänen-Laakso T. Yetukuri L. Agren J. Kolehmainen M. Laaksonen D.E. Ruskeepää A-L. Gylling H. Uusitupa M. Oresic M. GENOBIN Study Group Triacylglycerol fatty acid composition in diet-induced weight loss in subjects with abnormal glucose metabolism–the GENOBIN study.PLoS ONE. 2008; 3: e2630Crossref PubMed Scopus (78) Google Scholar), and type 2 diabetes (8Rhee E.P. Cheng S. Larson M.G. Walford G.A. Lewis G.D. McCabe E. Yang E. Farrell L. Fox C.S. O'Donnell C.J. et al.Lipid profiling identifies a triacylglycerol signature of insulin resistance and improves diabetes prediction in humans.J. Clin. Invest. 2011; 121: 1402-1411Crossref PubMed Scopus (450) Google Scholar). These studies have, in general, have been conducted using relatively small cohorts (<100 participants) (3Pietiläinen K.H. Sysi-Aho M. Rissanen A. Seppänen-Laakso T. Yki-Järvinen H. Kaprio J. Oresic M. Acquired obesity is associated with changes in the serum lipidomic profile independent of genetic effects–a monozygotic twin study.PLoS ONE. 2007; 2: e218Crossref PubMed Scopus (328) Google Scholar, 4Graessler J. Schwudke D. Schwarz P.E. Herzog R. Shevchenko A. Bornstein S.R. Top-down lipidomics reveals ether lipid deficiency in blood plasma of hypertensive patients.PLoS ONE. 2009; 4: e6261Crossref PubMed Scopus (263) Google Scholar, 6Ollero M. Astarita G. Guerrera I.C. Sermet-Gaudelus I. Trudel S. Piomelli D. Edelman A. Plasma lipidomics reveals potential prognostic signatures within a cohort of cystic fibrosis patients.J. Lipid Res. 2011; 52: 1011-1022Abstract Full Text Full Text PDF PubMed Scopus (53) Google Scholar, 7Schwab U. Seppänen-Laakso T. Yetukuri L. Agren J. Kolehmainen M. Laaksonen D.E. Ruskeepää A-L. Gylling H. Uusitupa M. Oresic M. GENOBIN Study Group Triacylglycerol fatty acid composition in diet-induced weight loss in subjects with abnormal glucose metabolism–the GENOBIN study.PLoS ONE. 2008; 3: e2630Crossref PubMed Scopus (78) Google Scholar) and/or limited coverage of the lipidome (<100 species) (4Graessler J. Schwudke D. Schwarz P.E. Herzog R. Shevchenko A. Bornstein S.R. Top-down lipidomics reveals ether lipid deficiency in blood plasma of hypertensive patients.PLoS ONE. 2009; 4: e6261Crossref PubMed Scopus (263) Google Scholar, 6Ollero M. Astarita G. Guerrera I.C. Sermet-Gaudelus I. Trudel S. Piomelli D. Edelman A. Plasma lipidomics reveals potential prognostic signatures within a cohort of cystic fibrosis patients.J. Lipid Res. 2011; 52: 1011-1022Abstract Full Text Full Text PDF PubMed Scopus (53) Google Scholar, 8Rhee E.P. Cheng S. Larson M.G. Walford G.A. Lewis G.D. McCabe E. Yang E. Farrell L. Fox C.S. O'Donnell C.J. et al.Lipid profiling identifies a triacylglycerol signature of insulin resistance and improves diabetes prediction in humans.J. Clin. Invest. 2011; 121: 1402-1411Crossref PubMed Scopus (450) Google Scholar). Large population-based studies with hundreds or thousands of samples, such as ours, necessitate the need for high throughput analytical methodology. A plethora of analytical strategies have been developed for performing lipidomic profiling (9Han X. Yang K. Gross R.W. Multi-dimensional mass spectrometry-based shotgun lipidomics and novel strategies for lipidomic analyses.Mass Spectrom. Rev. 2012; 31: 134-178Crossref PubMed Scopus (417) Google Scholar). Here, we have combined a single phase extraction method with a targeted lipidomic approach using liquid chromatography electrospray ionization tandem mass spectrometry (LC ESI-MS/MS) to compare over 300 individual plasma lipids in a large population-based cohort, from the San Antonio Family Heart Study (SAFHS) (n = 1,076) (10Mitchell B.D. Kammerer C.M. Blangero J. Mahaney M.C. Rainwater D.L. Dyke B. Hixson J.E. Henkel R.D. Sharp R.M. Comuzzie A.G. et al.Genetic and environmental contributions to cardiovascular risk factors in Mexican Americans. The San Antonio Family Heart Study.Circulation. 1996; 94: 2159-2170Crossref PubMed Scopus (320) Google Scholar). The large sample size provides us with statistical power to examine novel associations between circulating molecular lipid species and common anthropometric, physiological, and lifestyle measures (age, sex, obesity, and smoking) at a population level. The SAFHS investigated the genetics and risk factors of cardiovascular disease (CVD) in Mexican Americans by profiling 1,431 individuals in 42 extended families at baseline (10Mitchell B.D. Kammerer C.M. Blangero J. Mahaney M.C. Rainwater D.L. Dyke B. Hixson J.E. Henkel R.D. Sharp R.M. Comuzzie A.G. et al.Genetic and environmental contributions to cardiovascular risk factors in Mexican Americans. The San Antonio Family Heart Study.Circulation. 1996; 94: 2159-2170Crossref PubMed Scopus (320) Google Scholar). All procedures were approved by the institutional review board, and all subjects gave informed consent. Plasma cholesterol, HDL cholesterol, triglycerides, glucose, and insulin were measured (Table 1). Plasma samples were collected and stored at -75°C. Extensive genomic and gene expression profiling has been performed and genome wide association studies (GWAS) have identified many loci relating to type 2 diabetes, CVD, and other complex diseases (11Arar N.H. Voruganti V.S. Nath S.D. Thameem F. Bauer R. Cole S.A. Blangero J. MacCluer J.W. Comuzzie A.G. Abboud H.E. A genome-wide search for linkage to chronic kidney disease in a community-based sample: the SAFHS.Nephrol. Dial. Transplant. 2008; 23: 3184-3191Crossref PubMed Scopus (34) Google Scholar, 12Hixson J.E. Blangero J. Genomic searches for genes that influence atherosclerosis and its risk factors.Ann. N. Y. Acad. Sci. 2000; 902: 1-7Crossref PubMed Scopus (14) Google Scholar, 13Burke J.P. Duggirala R. Hale D.E. Blangero J. Stern M.P. Genetic basis of acanthosis nigricans in Mexican Americans and its association with phenotypes related to type 2 diabetes.Hum. Genet. 2000; 106: 467-472Crossref PubMed Scopus (15) Google Scholar, 14Atwood L.D. Samollow P.B. Hixson J.E. Stern M.P. MacCluer J.W. Genome-wide linkage analysis of pulse pressure in Mexican Americans.Hypertension. 2001; 37: 425-428Crossref PubMed Google Scholar, 15Cai G. Cole S.A. Freeland-Graves J.H. MacCluer J.W. Blangero J. Comuzzie A.G. Genome-wide scans reveal quantitative trait Loci on 8p and 13q related to insulin action and glucose metabolism: the San Antonio Family Heart Study.Diabetes. 2004; 53: 1369-1374Crossref PubMed Scopus (22) Google Scholar).TABLE 1Anthropometric and biochemical measurements of the participants of the SAFHSaN = 1,076. Participants with incomplete data were excluded from the statistical analysis.39.1% Male and 23.3% SmokersMedianInterquartile rangeAge (years)35.7324.67–48.88BMI (kg/m2)28.4724.58–32.95Systolic blood pressure (mm Hg)117108–128Diastolic blood pressure (mm Hg)7164–77Fasting blood glucose (mmol/l)4.94.5–5.3Two hour post load glucose (mmol/l)5.64.6–7.5Triglyceride (mmol/l)1.350.96–1.90Cholesterol (mmol/l)4.814.23–5.47HDL cholesterol (mmol/l)1.241.06–1.47LDL cholesterol (mmol/l)2.872.34–3.45a N = 1,076. Participants with incomplete data were excluded from the statistical analysis. Open table in a new tab Plasma samples from the SAFHS for which we had complete data (n = 1,076) were randomized prior to lipid extraction. Samples were thawed and 1 ¼l of the anti-oxidant butylhydroxytoluene (BHT) (100 mM in ethanol) per 1,000 ¼l of plasma was added. To each plasma sample (10 ¼l) a mixture of internal standards in chloroform:methanol (1:1, 15 ¼l) was added. The internal standards comprised lipids which are either stable isotope labeled or nonphysiological, and so present in plasma at extremely low concentrations (Table 2). Lipids were extracted in a single phase chloroform:methanol (2:1) procedure as described previously (16Meikle P.J. Wong G. Tsorotes D. Barlow C.K. Weir J.M. Christopher M.J. MacIntosh G.L. Goudey B. Stern L. Kowalczyk A. et al.Plasma lipidomic analysis of stable and unstable coronary artery disease.Arterioscler. Thromb. Vasc. Biol. 2011; 31: 2723-2732Crossref PubMed Scopus (218) Google Scholar).TABLE 2Conditions for tandem mass spectrometry analysis of lipid species identified in human plasmaLipid Class or SubclassNo. of SpeciesInternal StandardPmolaAmount of internal standard per sample.Parent IonExperimentVoltage Settings (V)DPEPCollECXPdhCer6dhCer 8:0100[M+H]+PIS, m/z 284.390302810Cer6Cer 17:0100[M+H]+PIS, m/z 264.350103512MHC6MHC 16:0 d350[M+H]+PIS, m/z 264.377105012DHC6DHC 16:0 d350[M+H]+PIS, m/z 264.3100106512THC6THC 17:050[M+H]+PIS, m/z 264.3130107312GM6THC 17:050[M+H]+PIS, m/z 264.31551010516SM19SM 12:0200[M+H]+PIS, m/z 184.165103512PC41PC 13:0/13:0100[M+H]+PIS, m/z 184.1100104511PC(O)18PC 13:0/13:0100[M+H]+PIS, m/z 184.1100104511PC(P)8PC 13:0/13:0100[M+H]+PIS, m/z 184.1100104511LPC21LPC 13:0100[M+H]+PIS, m/z 184.190103812LPC(O)6LPC 13:0100[M+H]+PIS, m/z 285.29010425PE18PE 17:0/17:0100[M+H]+NL, 141 Da8010317PE(O)12PE 17:0/17:0100[M+H]+NL, 141 Da8010317PE(P)9PE 17:0/17:0100[M+H]+NL, 141 Da8010317LPE6PE 14:0/0:0100[M+H]+NL, 141 Da8010317PI17PE 17:0/17:0100[M+NH4]+PIS, m/z 184.151104314PS7PS 17:0/17:0100[M+H]+NL, 185 Da86102916PG4PG 17:0/17:0100[M+NH4]+NL, 189 Da60102512CE26CE 18:0 d61,000[M+NH4]+PIS, m/z 369.330102012COH1COH d71,000[M+NH4]+PIS, m/z 369.355101712DG21DG 15:0/15:0200[M+NH4]+NL, fatty acid55103022TG43TG 17:0/17:0/17:0100[M+NH4]+NL, fatty acid95103012PIS, precursor ion scan; NL, neutral loss scan; DP, declustering potential; EP, entrance potential; CollE, collision energy; CXP, collision cell exit potential.a Amount of internal standard per sample. Open table in a new tab PIS, precursor ion scan; NL, neutral loss scan; DP, declustering potential; EP, entrance potential; CollE, collision energy; CXP, collision cell exit potential. Lipid analysis was performed by LC ESI-MS/MS using an Agilent 1200 liquid chromatography system and Applied Biosystems API 4000 Q/TRAP mass spectrometer with a turbo-ionspray source (350°C) and Analyst 1.5 and Multiquant data systems. Liquid chromatography was performed on a Zorbax C18, 1.8 ¼m, 50 x 2.1 mm column (Agilent Technologies). Solvents A and B consisted of tetrahydrofuran:methanol:water in the ratio (30:20:50) and (75:20:5) respectively, both containing 10 mM ammonium formate. Columns were heated to 50°C and the auto-sampler regulated to 25°C. Diacylglycerol (DG) and triacylglycerol (TG) species (1 ¼l injection) were separated using an isocratic flow (100 ¼l/min) of 85% solvent B over 6 min. All other lipid species (5 ¼l injection) were separated under gradient conditions (300 ¼l/min) 0% solvent B to 100% solvent B over 8.0 min, 2.5 min at 100% solvent B, a return to 0% solvent B over 0.5 min then 10.5 min at 0% solvent B prior to the next injection. Representative chromatograms are shown in Fig. 1. Internal standards were available for most lipid classes and subclasses investigated. Using direct infusion experiments of these standards, declustering potential, collision energy, and exit potential were optimized to give maximum response. Using these values, precursor ion scans and neutral loss scans were performed on a lipid extract of pooled plasma obtained from healthy volunteers to identify the major lipid species of the following classes and subclasses: dihydroceramide (dhCer), ceramide (Cer), monohexosylceramide (MHC), dihexosylceramide (DHC), trihexosylceramide (THC), GM3 ganglioside (GM), sphingomyelin (SM), phosphatidylcholine (PC), alkylphosphatidylcholine [PC(O)], phosphatidylcholine plasmalogen [PC(P)], lysophosphatidylcholine (LPC), lysoalkylphosphatidylcholine [LPC(O)], phosphatidylethanolamine (PE), alkylphosphatidylethanolamine [PE(O)], phosphatidylethanolamine plasmalogen [PE(P)], lysophosphatidylethanolamine (LPE), phosphatidylinositol (PI), phosphatidylserine (PS), phosphatidylglycerol (PG), cholesterol ester (CE), free cholesterol (COH), DG, and TG (Table 2). Species that were chromatographically separated and gave a signal within the linear range of response (see Linearity of response below and Table 3) were subsequently incorporated into multiple reaction monitoring (MRM) experiments for comparative analysis. In the case of DG and TG species, the acyl chains were identified by chromatographically aligning the different neutral loss scans of each precursor mass. In cases where more than one combination of acyl chains was possible for one precursor mass, a unique fragment was chosen to distinguish between isomers that were not chromatographically separated. MRM experiments, established for each lipid species, were combined into two scheduled MRM experiments whereby data from each MRM was only collected during its retention time window (+ mn; 30 sec) (see Table 2 and supplementary Table I).TABLE 3Assay performance of lipid classes and subclasses from plasma QC samplesLipid Class or SubclassaSum of the individual species within that class or subclass.Linear Range (¼M)bCalculated from one lipid species (spiked into QC plasma) and compared with the internal standard for that class or subclass.R2Recovery, %cPercent recovery compared with matrix spike.Intra-run Variation, %dAverage intra-run CV from four separate analyses.Assay Variation, %eCV from 63 QC plasma samples across 1,076 samples in four analytical runs.dhCer0.005–1000.99089.69.913.1Cer0.005–1000.99691.87.26.8MonohexosylceramidefNo suitable standards were available.——88.48.513.6DHC0.01–1000.99991.39.29.6THC0.01–1000.99989.68.89.6GMfNo suitable standards were available.———8.39.1SM0.005–5000.98890.45.46.4PC0.005–5000.98889.67.78.3PC(O)fNo suitable standards were available.———6.98.9PC(P)fNo suitable standards were available.———5.79.4LPC0.01–1000.99990.67.914.3LPC(O)fNo suitable standards were available.———6.06.4PE0.005–1000.99488.25.56.3PE(O)fNo suitable standards were available.———6.27.4PE(P)0.005–1000.994—7.47.8LPE0.005–1000.99487.77.49.8PIfNo suitable standards were available.———6.98.3PSfNo suitable standards were available.——89.122.422.6PG0.01–1000.99889.113.213.8CE0.005–10000.99886.312.413.2COH5–1000.99983.717.917.5DG0.05–1000.99692.320.117.5TG0.05–10000.99793.323.720.4a Sum of the individual species within that class or subclass.b Calculated from one lipid species (spiked into QC plasma) and compared with the internal standard for that class or subclass.c Percent recovery compared with matrix spike.d Average intra-run CV from four separate analyses.e CV from 63 QC plasma samples across 1,076 samples in four analytical runs.f No suitable standards were available. Open table in a new tab Comparative lipid abundances were calculated by relating the peak area of each species to the peak area of the corresponding internal standard. Peak integration was performed using AB Sciex MultiQuant software v1.2. Total measured lipids of each class were calculated by summing the abundance of individual lipid species. In a number of cases described below correction factors were applied. Fragmentation of the ammoniated adducts of DGs and TGs leads to the loss of ammonia and a fatty acid. However, DG can also lose water, which must also be considered to avoid erroneous assignment of the fatty acids in each DG species. For species containing different fatty acids, multiple product ions corresponding to the loss of each of the fatty acids will be formed and the signal divided between these competing pathways. While we would ideally monitor each of these losses with a separate MRM transition, the number of MRM transitions that would be required was too great to be compatible with the chromatographic timescale on which we were working. As a result, a single MRM transition was used to monitor each DG and TG. In this context it is important to recognize that for species which contain more than one of the same fatty acid, the loss of that fatty acid will result in an enhanced signal, as it is the end product from two competing pathways. Consequently, where we used an MRM transition that corresponded to the loss of a fatty acid that was present more than once, we divided by the number of times that fatty acid was present. While we recognize that the response factor for different species of TG varied substantially, the lack of suitable standards precluded the determination of suitable response factors for each TG species. Response factors were determined with seven commercially available species and used to create a formula to extrapolate for all CE chain lengths and double bonds. Saturated species were characterized by the following relationship: y = 0.74x - 10.56, where y is the response factor relative to the CE 18:0 d6 internal standard and x is the carbon chain length. For monounsaturated species, the response factor was multiplied by 1.62 and for polyunsaturated species by 4.40. Linear regression was used for analyzing and describing the linear relationship between lipids and selected characteristics in the SAFHS study. The β-coefficient describes the slope of the regression line and reflects the amount of variance of the dependent variable that is explained by variation of the independent variable. We applied linear regression to identify linear associations of each individual lipid species and each lipid class or subclass to age and body mass index (BMI) adjusting for appropriate covariates in each analysis. Logistic regression was used for analyzing and describing the relationship between lipids and dichotomous dependent variables in the SAFHS study. It relates the log odds of the probability of an event to a linear combination of the predictor variables. We applied logistic regression to identify associations of each individual lipid species and each lipid class or subclass to gender and smoking status adjusting for appropriate covariates in each analysis. The P values for linear and logistic regression were adjusted for multiple comparisons using the Benjamini-Hochberg approach (17Benjamini Y. Hochberg Y. Controlling the false discovery rate: a practical and powerful approach to multiple testing.J. R. Stat. Soc. B. 1995; 57: 289-300Google Scholar). Pearson correlation analysis was used to describe the linear relationship between each lipid species and all other lipid species. The lipids in each class and subclass examined were identified using pooled plasma samples from healthy volunteers by neutral loss and precursor ion scans (Table 2) and confirmed with product ion scans in positive and negative mode. Although the reverse phase chromatography resulted in the coelution of different lipid classes (Fig. 1), it did provide clear separation of isobaric species within each class such that isobaric species of PC(O), PC(P), and PC were well separated (Fig. 2A, supplementary Table I). Similarly, lipid species of the same class which differ only by a double bond are chromatographically separated. This is particularly important as the [M+2+H]+ ions of the more highly unsaturated species have the same nominal mass as the monoisotopic [M+H]+ ions of the less saturated species. As a result, the more highly unsaturated species give rise to a signal for the MRM transition used to monitor the less saturated species. This chromatographic resolution was possible for all lipid classes and subclasses (examples shown in Fig. 2B–D; full data in supplementary Table I). Further, as PC and SM undergo the same fragmentation to produce the phosphocholine head group with m/z 184, they can potentially be convoluted, if not separated chromatographically. The chromatography provided clear separation of the PC isotopologues from the isobaric SM species (Fig. 3A), but the SM isotopologues did coelute with the PC species (Fig. 3B, C). In many instances this did not make a significant difference to the PC species as the SM isotopologue was of relatively low abundance. In cases where the signal from the SM isotopologue represented more than 5% of the PC species, the PC species was excluded from the analysis (species excluded on this basis were PC 32:3, PC 32:2, PC 32:1, PC 35:1, and PC 36:1). Recovery of lipids was calculated by extracting plasma, spiked with internal standards, and comparing peak areas to those of plasma extracts that were spiked with the same standards after extraction. Samples were reconstituted according to the protocol and analyzed as described (Methods). The recoveries of all standards were >86% (mean 89.0%, median 89.6%, Table 3). We have made the assumption that recovery of the internal standard is representative of the recovery for associated lipid species in that class or subclass. The linearity and range of the lipid measurements was assessed using serial dilutions of lipid standards in a plasma matrix (Table 3). Under the assay conditions used, we observed detector saturation for the most abundant lipids; such saturation could lead to nonlinear responses. To circumvent this problem for those abundant lipids, in quadrapole 1 (Q1) we selected for the isotopologues which have a higher m/z (1 or 2 Da, designated as M+1 or M+2, respectively) but lower abundance than the monoisotopic parent ion. We incremented the corresponding Q3 m/z by the same amount as the Q1 m/z. These species were then normalized to the Q1 and Q3 ion pair of the internal standard corresponding to the equivalent isotopolgues. Using a combination of transitions corresponding to the monoisotopic ion and the Q1 and Q3 values increased by one m/z unit we observed linear responses up to 500 ¼M in plasma with R2 values between 0.984 and 0.999. Using the Q1 and Q3 values increased by two m/z units, this was extended to 1,000 ¼M for CEs (R2= 0.998) and TGs (R2= 0.997) to cover the full range of concentrations expected in plasma. As the difference between number of carbons in the internal standard and lipid of interest increases, so the relative intensities of the M+1 ions will also differ, potentially leading to greater difference in response factors and thereby compromising quantitative accuracy. While this is not an issue in comparative lipidomics, this differential should be adjusted for if accurate quantification is the goal. We used 63 evenly spaced quality control (QC) plasma samples within the analysis of the 1,076 SAFHS samples. The analysis was performed over four LC-MS runs each of between 2 and 3 days duration. Two measures were used to assess the performance of the lipid measurements: i) the average intra-run %CV (coefficient of variation), where we calculate the average of the %CV for each of the four runs (each run contained between 13 and 17 QC samples); and ii) the %CVs across the entire analysis (63 QC samples), see Table 3. The median of the average intra-run %CV for the 23 lipid classes and subclasses (sum of the individual species) was 7.9% while the median %CV across the entire cohort was 9.6%. We also calculated %CVs of the 312 individual lipid species in the QC plasma extracts. The median average intra-run %CV was 10.6% with 90% of lipid species less than 27.6%, while the median %CV across the entire cohort was 13.8% with 90% lipid species less than 24.5%. Lipid species with %CV greater than 30% were typically of low abundance and/or had poor chromatography. Supplementary Fig. I shows histograms of the %CVs for the lipid species. Pearson's correlation analysis identified positive correlations between lipid species within each lipid class/subclass, in particular PE, PS, DG, TG, and the sphingolipid classes were highly correlated (Fig. 4, supplementary Figs. II–IV). Between classes, PE displayed a strong correlation with PG, PI, DGs, and TGs as well as some species of PC and CEs. CEs, DG, and TG showed positive correlations for the majority of species. While the sphingolipid species were strongly positively correlated within classes, they displayed marginal positive or negative correlation across classes (Fig. 4, supplementary Fig. II). We also observed negative correlations between the PC(O) and plasmalogen with a number of lipid classes including PE, DG, and TG. PC species showed relatively weak correlation within the class and weak or negative correlations with the PC(O) and plasmalogen species (Fig. 4, supplementary Fig. III). The SAFHS population cohort consisted of 1,076 individuals (39.1% male) from 15–91 years of age. Anthropometric and biochemical measurements are detailed in Table 1. Of the 23 lipid classes and subclasses analyzed, 15 showed a significant association with sex (P < 0.05, Benjamini and Hochberg corrected). In addition to the expected elevated levels of CE (6.9%) and TG (12.8%) in males relative to females, we observed significantly
0

Plasma Lipid Profiling Shows Similar Associations with Prediabetes and Type 2 Diabetes

Peter Meikle et al.Sep 27, 2013
The relationship between lipid metabolism with prediabetes (impaired fasting glucose and impaired glucose tolerance) and type 2 diabetes mellitus is poorly defined. We hypothesized that a lipidomic analysis of plasma lipids might improve the understanding of this relationship. We performed lipidomic analysis measuring 259 individual lipid species, including sphingolipids, phospholipids, glycerolipids and cholesterol esters, on fasting plasma from 117 type 2 diabetes, 64 prediabetes and 170 normal glucose tolerant participants in the Australian Diabetes, Obesity and Lifestyle Study (AusDiab) then validated our findings on 1076 individuals from the San Antonio Family Heart Study (SAFHS). Logistic regression analysis of identified associations with type 2 diabetes (135 lipids) and prediabetes (134 lipids), after adjusting for multiple covariates. In addition to the expected associations with diacylglycerol, triacylglycerol and cholesterol esters, type 2 diabetes and prediabetes were positively associated with ceramide, and its precursor dihydroceramide, along with phosphatidylethanolamine, phosphatidylglycerol and phosphatidylinositol. Significant negative associations were observed with the ether-linked phospholipids alkylphosphatidylcholine and alkenylphosphatidylcholine. Most of the significant associations in the AusDiab cohort (90%) were subsequently validated in the SAFHS cohort. The aberration of the plasma lipidome associated with type 2 diabetes is clearly present in prediabetes, prior to the onset of type 2 diabetes. Lipid classes and species associated with type 2 diabetes provide support for a number of existing paradigms of dyslipidemia and suggest new avenues of investigation.
Load More