SW
Scott Weiss
Author with expertise in Genomic Studies and Association Analyses
Brigham and Women's Hospital, Harvard University, Mass General Brigham
+ 11 more
Achievements
Open Access Advocate
Cited Author
Key Stats
Upvotes received:
0
Publications:
50
(52% Open Access)
Cited by:
42
h-index:
146
/
i10-index:
710
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Inherited Causes of Clonal Hematopoiesis of Indeterminate Potential in TOPMed Whole Genomes

Alexander Bick et al.May 6, 2020
+120
S
J
A
ABSTRACT Age is the dominant risk factor for most chronic human diseases; yet the mechanisms by which aging confers this risk are largely unknown. 1 Recently, the age-related acquisition of somatic mutations in regenerating hematopoietic stem cell populations was associated with both hematologic cancer incidence 2–4 and coronary heart disease prevalence. 5 Somatic mutations with leukemogenic potential may confer selective cellular advantages leading to clonal expansion, a phenomenon termed ‘Clonal Hematopoiesis of Indeterminate Potential’ (CHIP). 6 Simultaneous germline and somatic whole genome sequence analysis now provides the opportunity to identify root causes of CHIP. Here, we analyze high-coverage whole genome sequences from 97,691 participants of diverse ancestries in the NHLBI TOPMed program and identify 4,229 individuals with CHIP. We identify associations with blood cell, lipid, and inflammatory traits specific to different CHIP genes. Association of a genome-wide set of germline genetic variants identified three genetic loci associated with CHIP status, including one locus at TET2 that was African ancestry specific. In silico -informed in vitro evaluation of the TET2 germline locus identified a causal variant that disrupts a TET2 distal enhancer. Aggregates of rare germline loss-of-function variants in CHEK2 , a DNA damage repair gene, predisposed to CHIP acquisition. Overall, we observe that germline genetic variation altering hematopoietic stem cell function and the fidelity of DNA-damage repair increase the likelihood of somatic mutations leading to CHIP.
0
Citation22
0
Save
1

Unsupervised cluster analysis of SARS-CoV-2 genomes indicates that recent (June 2020) cases in Beijing are from a genetic subgroup that consists of mostly European and South(east) Asian samples, of which the latter are the most recent

Georg Hahn et al.Oct 24, 2023
+2
S
M
G
Research efforts of the ongoing SARS-CoV-2 pandemic have focused on viral genome sequence analysis to understand how the virus spread across the globe. Here, we assess three recently identified SARS-CoV-2 genomes in Beijing from June 2020 and attempt to determine the origin of these genomes, made available in the GISAID database. The database contains fully or partially sequenced SARS-CoV-2 samples from laboratories around the world. Including the three new samples and excluding samples with missing annotations, we analyzed 7, 643 SARS-CoV-2 genomes. Using principal component analysis computed on a similarity matrix that compares all pairs of the SARS-CoV-2 nucleotide sequences at all loci simultaneously, using the Jaccard index, we find that the newly discovered virus genomes from Beijing are in a genetic cluster that consists mostly of cases from Europe and South(east) Asia. The sequences of the new cases are most related to virus genomes from a small number of cases from China (March 2020), cases from Europe (February to early May 2020), and cases from South(east) Asia (May to June 2020). These findings could suggest that the original cases of this genetic cluster originated from China in March 2020 and were re-introduced to China by transmissions from samples from South(east) Asia between April and June 2020.
1
Paper
Citation6
0
Save
1

Unsupervised cluster analysis of SARS-CoV-2 genomes reflects its geographic progression and identifies distinct genetic subgroups of SARS-CoV-2 virus

Georg Hahn et al.Oct 24, 2023
C
S
S
G
Over 10,000 viral genome sequences of the SARS-CoV-2 virus have been made readily available during the ongoing coronavirus pandemic since the initial genome sequence of the virus was released on the open access Virological website ( http://virological.org/ ) early on January 11. We utilize the published data on the single stranded RNAs of 11, 132 SARS-CoV-2 patients in the GISAID (Elbe and Buckland-Merrett, 2017; Shu and McCauley, 2017) database, which contains fully or partially sequenced SARS-CoV-2 samples from laboratories around the world. Among many important research questions which are currently being investigated, one aspect pertains to the genetic characterization/classification of the virus. We analyze data on the nucleotide sequencing of the virus and geographic information of a subset of 7, 640 SARS-CoV-2 patients without missing entries that are available in the GISAID database. Instead of modelling the mutation rate, applying phylogenetic tree approaches, etc., we here utilize a model-free clustering approach that compares the viruses at a genome-wide level. We apply principal component analysis to a similarity matrix that compares all pairs of these SARS-CoV-2 nucleotide sequences at all loci simultaneously, using the Jaccard index (Jaccard, 1901; Tan et al., 2005; Prokopenko et al., 2016; Schlauch et al., 2017). Our analysis results of the SARS-CoV-2 genome data illustrates the geographic and chronological progression of the virus, starting from the first cases that were observed in China to the current wave of cases in Europe and North America. This is in line with a phylogenetic analysis which we use to contrast our results. We also observe that, based on their sequence data, the SARS-CoV-2 viruses cluster in distinct genetic subgroups. It is the subject of ongoing research to examine whether the genetic subgroup could be related to diseases outcome and its potential implications for vaccine development.
1
Citation3
0
Save
9

A Computational Method to Dissect Colonization Resistance of the Gut Microbiota against Pathogens

Shanlin Ke et al.Oct 24, 2023
+3
S
Y
S
Abstract The indigenous gut microbes have co-evolved with their hosts for millions of years. Those gut microbes play a crucial role in host health and disease. In particular, they protect the host against incursion by exogenous and often harmful microorganisms, a mechanism known as colonization resistance (CR). Yet, identifying the exact microbes responsible for the gut microbiota-mediated CR against a particular pathogen remains a fundamental challenge in microbiome research. Here, we develop a computational method --- Generalized Microbe-Phenotype Triangulation (GMPT) to systematically identify causal microbes that directly influence the microbiota-mediated CR against a pathogen. We systematically validate GMPT using a classical population dynamics model in community ecology, and then apply it to microbiome data from two mouse studies on C. difficile infection. The developed method will not only significantly advance our understanding of CR mechanisms but also pave the way for the rational design of microbiome-based therapies for preventing and treating enteric infections.
5

Genomic signatures of the unjamming transition in compressed human bronchial epithelial cells

Margherita Marzio et al.Oct 24, 2023
+7
E
A
M
Abstract Epithelial tissue has the capacity to switch from a collective phase that is quiescent, solidlike and non-migratory to one that is dynamic, fluid-like and migratory. In certain physiological and pathophysiological contexts this phenotypic switch has been attributed not to the well-known epithelial-to-mesenchymal transition, EMT, but rather to the recently discovered unjamming transition, UJT. UJT has been characterized thus far mainly at functional and morphological levels whereas underlying genome-wide molecular events remain largely unexplored. Using primary human bronchial epithelial cells and one well-defined trigger of UJT –mechanical compression– here we combine temporal RNA-Seq data and Protein-Protein Interaction networks to provide the first genome-wide analysis of UJT. Our results show that compression induces a multiphasic transcriptional response characterized by an early activation of genes regulating the membrane and actomyosin structure, and a delayed activation of genes regulating the extracellular matrix and cellmatrix interactions. This biphasic response is mediated by a cascade of signaling processes that promotes actin polymerization through the recruitment of integrin-ECM adhesive complexes and promotes increased cellular motility through activation of AP-1 transcription factors via ERK and JNK pathways. These findings, taken together, show that the UJT program is not the result of any single signaling pathway but rather comprises a coordinated interplay of downstream pathways including development, fate selection, energy metabolism, cytoskeletal reorganization, and adhesive interaction with extracellular matrix.
3

Predicting metabolic response to dietary intervention using deep learning

Tong Wang et al.Oct 24, 2023
+3
S
H
T
Abstract Due to highly personalized biological and lifestyle characteristics, different individuals may have different metabolic responses to specific foods and nutrients. In particular, the gut microbiota, a collection of trillions of microorganisms living in our gastrointestinal tract, is highly personalized and plays a key role in our metabolic responses to foods and nutrients. Accurately predicting metabolic responses to dietary interventions based on individuals’ gut microbial compositions holds great promise for precision nutrition. Existing prediction methods are typically limited to traditional machine learning models. Deep learning methods dedicated to such tasks are still lacking. Here we develop a new method McMLP ( M etabolic response predictor using c oupled M ulti l ayer P erceptrons) to fill in this gap. We provide clear evidence that McMLP outperforms existing methods on both synthetic data generated by the microbial consumer-resource model and real data obtained from six dietary intervention studies. Furthermore, we perform sensitivity analysis of McMLP to infer the tripartite food-microbe-metabolite interactions, which are then validated using the ground-truth (or literature evidence) for synthetic (or real) data, respectively. The presented tool has the potential to inform the design of microbiota-based personalized dietary strategies to achieve precision nutrition.
6

Epithelial layer unjamming shifts energy metabolism toward glycolysis

Stephen DeCamp et al.Oct 24, 2023
+11
J
V
S
Abstract In development of an embryo, healing of a wound, or progression of a carcinoma, a requisite event is collective epithelial cellular migration. For example, cells at the advancing front of a wound edge tend to migrate collectively, elongate substantially, and exert tractions more forcefully compared with cells many ranks behind. With regards to energy metabolism, striking spatial gradients have recently been reported in the wounded epithelium, as well as in the tumor, but within the wounded cell layer little is known about the link between mechanical events and underlying energy metabolism. Using the advancing confluent monolayer of MDCKII cells as a model system, here we report at single cell resolution the evolving spatiotemporal fields of cell migration speeds, cell shapes, and traction forces measured simultaneously with fields of multiple indices of cellular energy metabolism. Compared with the epithelial layer that is unwounded, which is non-migratory, solid-like and jammed, the leading edge of the advancing cell layer is shown to become progressively more migratory, fluid-like, and unjammed. In doing so the cytoplasmic redox ratio becomes progressively smaller, the NADH lifetime becomes progressively shorter, and the mitochondrial membrane potential and glucose uptake become progressively larger. These observations indicate that a metabolic shift toward glycolysis accompanies collective cellular migration but show, further, that this shift occurs throughout the cell layer, even in regions where associated changes in cell shapes, traction forces, and migration velocities have yet to penetrate. In characterizing the wound healing process these morphological, mechanical, and metabolic observations, taken on a cell-by-cell basis, comprise the most comprehensive set of biophysical data yet reported. Together, these data suggest the novel hypothesis that the unjammed phase evolved to accommodate fluid-like migratory dynamics during episodes of tissue wound healing, development, and plasticity, but is more energetically expensive compared with the jammed phase, which evolved to maintain a solid-like non-migratory state that is more energetically economical. Two sentence summary At the leading front of an advancing confluent epithelial layer, each cell tends to migrate, elongate, and pull on its substrate far more than do cells many ranks behind, but little is known about underlying metabolic events. Using the advancing monolayer of MDCKII cells as a model of wound healing, here we show at single cell resolution that physical changes associated with epithelial layer unjamming are accompanied by an overall shift toward glycolytic metabolism.
0

Validation of human telomere length multi-ancestry meta-analysis association signals identifies POP5 and KBTBD6 as human telomere length regulation genes

Rebecca Keener et al.Sep 11, 2024
+95
L
B
R
Abstract Genome-wide association studies (GWAS) have become well-powered to detect loci associated with telomere length. However, no prior work has validated genes nominated by GWAS to examine their role in telomere length regulation. We conducted a multi-ancestry meta-analysis of 211,369 individuals and identified five novel association signals. Enrichment analyses of chromatin state and cell-type heritability suggested that blood/immune cells are the most relevant cell type to examine telomere length association signals. We validated specific GWAS associations by overexpressing KBTBD6 or POP5 and demonstrated that both lengthened telomeres. CRISPR/Cas9 deletion of the predicted causal regions in K562 blood cells reduced expression of these genes, demonstrating that these loci are related to transcriptional regulation of KBTBD6 and POP5 . Our results demonstrate the utility of telomere length GWAS in the identification of telomere length regulation mechanisms and validate KBTBD6 and POP5 as genes affecting telomere length regulation.
0
Citation1
0
Save
3

Eliminate false positives in metagenomic profiling based on type IIB restriction sites

Zheng Sun et al.Oct 24, 2023
+4
M
J
Z
Abstract Accurate species identification and abundance estimation are critical for the interpretation of whole metagenome shotgun sequencing (WMS) data. Numerous computational methods, broadly referred to as metagenomic profilers, have been developed to identify species in microbiome samples by classification of sequencing reads and quantification of their relative abundances. Yet, existing metagenomic profilers typically suffer from false positive identifications and consequently biased relative abundance estimation (as false positives can be accounted for more than 90% of total identified species). Here, we present a new metagenomic profiler MAP2B ( M et A genomic P rofiler based on type IIB restriction site) to resolve those issues. We first illustrate the pitfalls of using relative abundance as the only feature in determining false positives. We then propose a feature set to distinguish false positives from true positives. By benchmarking the performance in metagenomic profiling using data from CAMI2 (Critical Assessment of Metagenome Interpretation: second round of challenge), we illustrate the superior performance of MAP2B (F1 score ~ 0.93) over existing metagenomic profilers (F1 score ranges from 0.18 to 0.58). We further tested the performance of MAP2B using real WMS data from an ATCC mock community, confirming its superior performance and robustness against sequencing depth. In addition, by leveraging WMS data from an IBD cohort, we demonstrate the taxonomic features obtained by MAP2B can better discriminate disease status and predict metabolomic profiles.
3
Citation1
0
Save
12

powerEQTL: An R package and shiny application for sample size and power calculation of bulk tissue and single-cell eQTL analysis

Xianjun Dong et al.Oct 24, 2023
+2
T
X
X
Abstract Summary Genome-wide association studies (GWAS) have revealed thousands of genetic loci for common diseases. One of the main challenges in the post-GWAS era is to understand the causality of the genetic variants. Expression quantitative trait locus (eQTL) analysis has been proven to be an effective way to address this question by examining the relationship between gene expression and genetic variation in a sufficiently powered cohort. However, it is often tricky to determine the sample size at which a variant with a specific allele frequency will be detected to associate with gene expression with sufficient power. This is particularly demanding with single-cell RNAseq studies. Therefore, a user-friendly tool to perform power analysis for eQTL at both bulk tissue and single-cell level will be critical. Here, we presented an R package called powerEQTL with flexible functions to calculate power, minimal sample size, or detectable minor allele frequency in both bulk tissue and single-cell eQTL analysis. A user-friendly, program-free web application is also provided, allowing customers to calculate and visualize the parameters interactively. Availability and implementation The powerEQTL R package source code and online tutorial are freely available at CRAN: https://cran.r-project.org/web/packages/powerEQTL/ . The R shiny application is publicly hosted at https://bwhbioinfo.shinyapps.io/powerEQTL/ . Contact Xianjun Dong ( xdong@rics.bwh.harvard.edu ), Weiliang Qiu ( weiliang.qiu@sanofi.com ) Supplementary information Supplementary data are available at Bioinformatics online.
Load More