XL
Xiao Li
Author with expertise in Clustered Regularly Interspaced Short Palindromic Repeats and CRISPR-associated proteins
Achievements
This user has not unlocked any achievements yet.
Key Stats
Upvotes received:
0
Publications:
5
(40% Open Access)
Cited by:
0
h-index:
22
/
i10-index:
44
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

The GTEx Consortium atlas of genetic regulatory effects across human tissues

François Aguet et al.Oct 3, 2019
+51
D
Y
F
The Genotype-Tissue Expression (GTEx) project was established to characterize genetic effects on the transcriptome across human tissues, and to link these regulatory mechanisms to trait and disease associations. Here, we present analyses of the v8 data, based on 17,382 RNA-sequencing samples from 54 tissues of 948 post-mortem donors. We comprehensively characterize genetic associations for gene expression and splicing in cis and trans, showing that regulatory associations are found for almost all genes, and describe the underlying molecular mechanisms and their contribution to allelic heterogeneity and pleiotropy of complex traits. Leveraging the large diversity of tissues, we provide insights into the tissue-specificity of genetic effects, and show that cell type composition is a key factor in understanding gene regulatory mechanisms in human tissues.
0

A comprehensive analysis of RNA sequences reveals macroscopic somatic clonal expansion across normal tissues

Keren Yizhak et al.Sep 13, 2018
+17
J
F
K
Cancer genome studies have significantly advanced our knowledge of somatic mutations. However, how these mutations accumulate in normal cells and whether they promote pre-cancerous lesions remains poorly understood. Here we perform a comprehensive analysis of normal tissues by utilizing RNA sequencing data from ~6,700 samples across 29 normal tissues collected as part of the Genotype-Tissue Expression (GTEx) project. We identify somatic mutations using a newly developed pipeline, RNA-MuTect, for calling somatic mutations directly from RNA-seq samples and their matched-normal DNA. When applied to the GTEx dataset, we detect multiple variants across different tissues and find that mutation burden is associated with both the age of the individual and tissue proliferation rate. We also detect hotspot cancer mutations that share tissue specificity with their matched cancer type. This study is the first to analyze a large number of samples across multiple normal tissues, identifying clones with genomic aberrations observed in cancer.
0

The seven transmembrane domain protein MoRgs7 functions in surface perception and undergoes coronin MoCrn1-dependent endocytosis in complex with Gα subunit MoMagA to promote cAMP signaling and appressorium formation in Magnaporthe oryzae

Xiao Li et al.Oct 4, 2018
+8
J
Z
X
Regulator of G-protein signaling (RGS) proteins primarily function as GTPase-accelerating proteins (GAPs) to promote GTP hydrolysis of G alpha subunits, thereby regulating G-protein mediated signaling. RGS proteins could also contain additional domains such as GoLoco to inhibit GDP dissociation. The rice blast fungus Magnaporthe oryzae encodes eight RGS and RGS-like proteins (MoRgs1 to MoRgs8) that have shared and distinct functions in growth, appressorium formation and pathogenicity. Interestingly, MoRgs7 and MoRgs8 contain a C-terminal seven-transmembrane domain (7-TM) motif typical of G-protein coupled receptor (GPCR) proteins, in addition to the conserved RGS domain. We found that MoRgs7, together with G alpha MoMagA but not MoRgs8, undergoes endocytic transport from the plasma membrane to the endosome upon sensing of surface hydrophobicity. We also found that MoRgs7 can interact with hydrophobic surfaces via a hydrophobic interaction, leading to the perception of environmental hydrophobic cues. Moreover, we found that MoRgs7-MoMagA endocytosis is regulated by actin patch-associated protein MoCrn1, linking it to cAMP signaling. Our studies provided evidence suggesting that MoRgs7 could also function in a GPCR-like manner to sense environmental signals and it, together with additional proteins of diverse functions, promotes cAMP signaling required for developmental processes underlying appressorium function and pathogenicity.
6

Induction of core symptoms of autism spectrum disorders by in vivo CRISPR/Cas9-based gene editing in the brain of adolescent rhesus monkeys

Shihao Wu et al.Aug 4, 2020
+17
Y
J
S
Abstract Although CRISPR/Cas9-mediated gene editing is widely applied to mimic human disorders, whether acute manipulation of disease-causing genes in the brain leads to behavioral abnormalities in non-human primates remains to be determined. Here we induced genetic mutations in MECP2, a critical gene linked to Rett syndrome (RTT) and autism spectrum disorders (ASDs), in the hippocampus (DG and CA1–4) of adolescent rhesus monkeys (Macaca mulatta) in vivo via adeno-associated virus (AAV)-delivered Staphylococcus aureus Cas9 with sgRNAs targeting MECP2. In comparison to monkeys injected with AAV-SaCas9 alone (n = 4), numerous autistic-like behavioral abnormalities were identified in the AAV-SaCas9-sgMECP2-injected monkeys (n = 7), including social interaction deficits, abnormal sleep patterns, insensitivity to aversive stimuli, abnormal hand motions and defective social reward behaviors. Furthermore, some aspects of ASDs and RTT, such as stereotypic behaviors, did not appear in the MECP2 gene-edited monkeys, suggesting that different brain areas likely contribute to distinct ASD symptoms. This study showed that acute manipulation of disease-causing genes via in vivo gene editing directly led to behavioral changes in adolescent primates, paving the way for the rapid generation of genetically engineered non-human primate models for neurobiological studies and therapeutic development.
0

Co-editing PINK1 and DJ-1 genes via AAV-delivered CRISPR/Cas9 system in adult monkey brains elicits classic Parkinsonian phenotypes

Hao Li et al.Sep 20, 2020
+18
J
X
H
Abstract Whether direct manipulation of Parkinson’s disease (PD) risk genes in monkey brain can elicit Parkinsonian phenotypes remains an unsolved issue. Here, we employed an adeno-associated virus (AAV)-delivered CRISPR/Cas9 system to directly co-edit PINK1 and DJ-1 genes in the substantia nigra (SN) region of four adult monkey brains. After the operation, two of the monkeys exhibited all classic PD symptoms, including bradykinesia, tremor, and postural instability, accompanied by severe nigral dopaminergic neuron loss (over 60%) and α-synuclein pathology. The aged monkeys were more vulnerable to gene editing by showing faster PD progression, higher final total PD scores, and severer pathologic changes compared with their younger counterparts, suggesting both the genetic and aging factors played important roles in PD development. This gene editing system can be used to develop a large quantity of genetically edited PD monkeys over a short period, thus providing a practical transgenic monkey model for future PD studies.