BE
Barbara Engelhardt
Author with expertise in Comprehensive Integration of Single-Cell Transcriptomic Data
Achievements
Cited Author
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
33
(67% Open Access)
Cited by:
10,785
h-index:
44
/
i10-index:
79
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Understanding mechanisms underlying human gene expression variation with RNA sequencing

Joseph Pickrell et al.Mar 10, 2010
There is currently much interest in the understanding of genetic mechanisms that underlie variation at the gene expression level. Two groups reporting in this issue of Nature use RNA sequencing to study global gene expression in two contrasting populations. Pickrell et al. sequenced RNA from 69 lymphoblastoid cell lines derived from unrelated Nigerian individuals who have been extensively genotyped as part of the HapMap Project. By pooling data from all the individuals it was possible to identify many genetic determinants of variation in gene expression. Montgomery et al. characterize the mRNA fraction of RNA isolated from lymphoblastoid cell lines derived from 63 HapMap individuals of Caucasian origin. They obtain a fine-scale view of the transcriptome and identify genetic variants that affect alternative splicing. There is much interest in understanding the genetic mechanisms that underlie individual variations in gene expression. Here, RNA sequencing has been used to study gene expression in lymphoblastoid cell lines derived from Nigerian individuals for whom extensive genotype information is known. Numerous genetic determinants of variation in gene expression were identified, including variation in transcription, splicing and allele-specific expression. Understanding the genetic mechanisms underlying natural variation in gene expression is a central goal of both medical and evolutionary genetics, and studies of expression quantitative trait loci (eQTLs) have become an important tool for achieving this goal1. Although all eQTL studies so far have assayed messenger RNA levels using expression microarrays, recent advances in RNA sequencing enable the analysis of transcript variation at unprecedented resolution. We sequenced RNA from 69 lymphoblastoid cell lines derived from unrelated Nigerian individuals that have been extensively genotyped by the International HapMap Project2. By pooling data from all individuals, we generated a map of the transcriptional landscape of these cells, identifying extensive use of unannotated untranslated regions and more than 100 new putative protein-coding exons. Using the genotypes from the HapMap project, we identified more than a thousand genes at which genetic variation influences overall expression levels or splicing. We demonstrate that eQTLs near genes generally act by a mechanism involving allele-specific expression, and that variation that influences the inclusion of an exon is enriched within and near the consensus splice sites. Our results illustrate the power of high-throughput sequencing for the joint analysis of variation in transcription, splicing and allele-specific expression across individuals.
0
Citation1,296
0
Save
0

Local genetic effects on gene expression across 44 human tissues

François Aguet et al.Sep 9, 2016
Abstract Expression quantitative trait locus (eQTL) mapping provides a powerful means to identify functional variants influencing gene expression and disease pathogenesis. We report the identification of cis-eQTLs from 7,051 post-mortem samples representing 44 tissues and 449 individuals as part of the Genotype-Tissue Expression (GTEx) project. We find a cis-eQTL for 88% of all annotated protein-coding genes, with one-third having multiple independent effects. We identify numerous tissue-specific cis-eQTLs, highlighting the unique functional impact of regulatory variation in diverse tissues. By integrating large-scale functional genomics data and state-of-the-art fine-mapping algorithms, we identify multiple features predictive of tissue-specific and shared regulatory effects. We improve estimates of cis-eQTL sharing and effect sizes using allele specific expression across tissues. Finally, we demonstrate the utility of this large compendium of cis-eQTLs for understanding the tissue-specific etiology of complex traits, including coronary artery disease. The GTEx project provides an exceptional resource that has improved our understanding of gene regulation across tissues and the role of regulatory variation in human genetic diseases.
0
Citation63
0
Save
62

Alignment of spatial genomics and histology data using deep Gaussian processes

Andrew Jones et al.Jan 11, 2022
Abstract Spatially-resolved genomic technologies have allowed us to study the physical organization of cells and tissues, and promise an understanding of the local interactions between cells. However, it remains difficult to precisely align spatial observations across slices, samples, scales, individuals, and technologies. Here, we propose a probabilistic model that aligns a set of spatially-resolved genomics and histology slices onto a known or unknown common coordinate system into which the samples are aligned both spatially and in terms of the phenotypic readouts (e.g., gene or protein expression levels, cell density, open chromatin regions). Our method consists of a two-layer Gaussian process: the first layer maps the observed samples’ spatial locations into a common coordinate system, and the second layer maps from the common coordinate system to the observed readouts. Our approach also allows for slices to be mapped to a known template coordinate space if one exists. We show that our registration approach enables complex downstream spatially-aware analyses of spatial genomics data at multiple resolutions that are impossible or inaccurate with unaligned data, including an analysis of variance, differential expression across the z -axis, and association tests across multiple data modalities.
62
Citation6
0
Save
Load More