AM
Ali Madani
Author with expertise in Ribosome Structure and Translation Mechanisms
Achievements
Cited Author
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
10
(80% Open Access)
Cited by:
1,140
h-index:
20
/
i10-index:
24
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Fast and accurate view classification of echocardiograms using deep learning

Ali Madani et al.Jan 30, 2018
Abstract Echocardiography is essential to cardiology. However, the need for human interpretation has limited echocardiography’s full potential for precision medicine. Deep learning is an emerging tool for analyzing images but has not yet been widely applied to echocardiograms, partly due to their complex multi-view format. The essential first step toward comprehensive computer-assisted echocardiographic interpretation is determining whether computers can learn to recognize these views. We trained a convolutional neural network to simultaneously classify 15 standard views (12 video, 3 still), based on labeled still images and videos from 267 transthoracic echocardiograms that captured a range of real-world clinical variation. Our model classified among 12 video views with 97.8% overall test accuracy without overfitting. Even on single low-resolution images, accuracy among 15 views was 91.7% vs. 70.2–84.0% for board-certified echocardiographers. Data visualization experiments showed that the model recognizes similarities among related views and classifies using clinically relevant image features. Our results provide a foundation for artificial intelligence-assisted echocardiographic interpretation.
0

Deep echocardiography: data-efficient supervised and semi-supervised deep learning towards automated diagnosis of cardiac disease

Ali Madani et al.Oct 9, 2018
Deep learning and computer vision algorithms can deliver highly accurate and automated interpretation of medical imaging to augment and assist clinicians. However, medical imaging presents uniquely pertinent obstacles such as a lack of accessible data or a high-cost of annotation. To address this, we developed data-efficient deep learning classifiers for prediction tasks in cardiology. Using pipeline supervised models to focus relevant structures, we achieve an accuracy of 94.4% for 15-view still-image echocardiographic view classification and 91.2% accuracy for binary left ventricular hypertrophy classification. We then develop semi-supervised generative adversarial network models that can learn from both labeled and unlabeled data in a generalizable fashion. We achieve greater than 80% accuracy in view classification with only 4% of labeled data used in solely supervised techniques and achieve 92.3% accuracy for left ventricular hypertrophy classification. In exploring trade-offs between model type, resolution, data resources, and performance, we present a comprehensive analysis and improvements of efficient deep learning solutions for medical imaging assessment especially in cardiology.
92

FLIP: Benchmark tasks in fitness landscape inference for proteins

Christian Dallago et al.Nov 11, 2021
Abstract Machine learning could enable an unprecedented level of control in protein engineering for therapeutic and industrial applications. Critical to its use in designing proteins with desired properties, machine learning models must capture the protein sequence-function relationship, often termed fitness landscape . Existing bench-marks like CASP or CAFA assess structure and function predictions of proteins, respectively, yet they do not target metrics relevant for protein engineering. In this work, we introduce Fitness Landscape Inference for Proteins (FLIP), a benchmark for function prediction to encourage rapid scoring of representation learning for protein engineering. Our curated tasks, baselines, and metrics probe model generalization in settings relevant for protein engineering, e.g. low-resource and extrapolative. Currently, FLIP encompasses experimental data across adeno-associated virus stability for gene therapy, protein domain B1 stability and immunoglobulin binding, and thermostability from multiple protein families. In order to enable ease of use and future expansion to new tasks, all data are presented in a standard format. FLIP scripts and data are freely accessible at https://benchmark.protein.properties .
76

Deep neural language modeling enables functional protein generation across families

Ali Madani et al.Jul 18, 2021
Bypassing nature’s evolutionary trajectory, de novo protein generation—defined as creating artificial protein sequences from scratch—could enable breakthrough solutions for biomedical and environmental challenges. Viewing amino acid sequences as a language, we demonstrate that a deep learning-based language model can generate functional artificial protein sequences across families, akin to generating grammatically and semantically correct natural language sentences on diverse topics. Our protein language model is trained by simply learning to predict the next amino acid for over 280 million protein sequences from thousands of protein families, without biophysical or coevolutionary modeling. We experimentally evaluate model-generated artificial proteins on five distinct antibacterial lysozyme families. Artificial proteins show similar activities and catalytic efficiencies as representative natural lysozymes, including hen egg white lysozyme, while reaching as low as 44% identity to any known naturally-evolved protein. The X-ray crystal structure of an enzymatically active artificial protein recapitulates the conserved fold and positioning of active site residues found in natural proteins. We demonstrate our language model’s ability to be adapted to different protein families by accurately predicting the functionality of artificial chorismate mutase and malate dehydrogenase proteins. These results indicate that neural language models successfully perform de novo protein generation across protein families and may prove to be a tool to shortcut evolution.
4

Design of highly functional genome editors by modeling the universe of CRISPR-Cas sequences

Jeffrey Ruffolo et al.Apr 22, 2024
Gene editing has the potential to solve fundamental challenges in agriculture, biotechnology, and human health. CRISPR-based gene editors derived from microbes, while powerful, often show significant functional tradeoffs when ported into non-native environments, such as human cells. Artificial intelligence (AI) enabled design provides a powerful alternative with potential to bypass evolutionary constraints and generate editors with optimal properties. Here, using large language models (LLMs) trained on biological diversity at scale, we demonstrate the first successful precision editing of the human genome with a programmable gene editor designed with AI. To achieve this goal, we curated a dataset of over one million CRISPR operons through systematic mining of 26 terabases of assembled genomes and meta-genomes. We demonstrate the capacity of our models by generating 4.8x the number of protein clusters across CRISPR-Cas families found in nature and tailoring single-guide RNA sequences for Cas9-like effector proteins. Several of the generated gene editors show comparable or improved activity and specificity relative to SpCas9, the prototypical gene editing effector, while being 400 mutations away in sequence. Finally, we demonstrate an AI-generated gene editor, denoted as OpenCRISPR-1, exhibits compatibility with base editing. We release OpenCRISPR-1 publicly to facilitate broad, ethical usage across research and commercial applications.
4
Citation2
8
Save