AR
Aakrosh Ratan
Author with expertise in RNA Sequencing Data Analysis
Achievements
Cited Author
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
24
(63% Open Access)
Cited by:
2,145
h-index:
44
/
i10-index:
76
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Comparative and demographic analysis of orang-utan genomes

Devin Locke et al.Jan 25, 2011
The genome of the Southeast Asian great ape or orang-utan has been sequenced — specifically a draft assembly of a Sumatran female individual and short-read sequence data from five further Sumatran and five Bornean orang-utan, Pongo abelii and Pongo pygmaeus, respectively. Orang-utan species appear to have split around 400,000 years ago, more recent than most previous estimates suggested, resulting in an average Bornean–Sumatran nucleotide identity of 99.68%. Structural evolution of the orang-utan genome seems to have proceeded much more slowly than that of other great apes, including chimpanzees and humans. With both orang-utan species on the endangered list, the authors hope that knowledge of the genome sequence and its variation between populations will provide a valuable resource for conservationists. The genome of the southeast Asian orang-utan has been sequenced. The draft assembly of a Sumatran individual alongside sequence data from five Sumatran and five Bornean orang-utan genomes is presented. The resources and analyses described offer new opportunities in evolutionary genomics, insights into hominid biology, and an extensive database of variation for conservation efforts. ‘Orang-utan’ is derived from a Malay term meaning ‘man of the forest’ and aptly describes the southeast Asian great apes native to Sumatra and Borneo. The orang-utan species, Pongo abelii (Sumatran) and Pongo pygmaeus (Bornean), are the most phylogenetically distant great apes from humans, thereby providing an informative perspective on hominid evolution. Here we present a Sumatran orang-utan draft genome assembly and short read sequence data from five Sumatran and five Bornean orang-utan genomes. Our analyses reveal that, compared to other primates, the orang-utan genome has many unique features. Structural evolution of the orang-utan genome has proceeded much more slowly than other great apes, evidenced by fewer rearrangements, less segmental duplication, a lower rate of gene family turnover and surprisingly quiescent Alu repeats, which have played a major role in restructuring other primate genomes. We also describe a primate polymorphic neocentromere, found in both Pongo species, emphasizing the gradual evolution of orang-utan genome structure. Orang-utans have extremely low energy usage for a eutherian mammal1, far lower than their hominid relatives. Adding their genome to the repertoire of sequenced primates illuminates new signals of positive selection in several pathways including glycolipid metabolism. From the population perspective, both Pongo species are deeply diverse; however, Sumatran individuals possess greater diversity than their Bornean counterparts, and more species-specific variation. Our estimate of Bornean/Sumatran speciation time, 400,000 years ago, is more recent than most previous studies and underscores the complexity of the orang-utan speciation process. Despite a smaller modern census population size, the Sumatran effective population size (Ne) expanded exponentially relative to the ancestral Ne after the split, while Bornean Ne declined over the same period. Overall, the resources and analyses presented here offer new opportunities in evolutionary genomics, insights into hominid biology, and an extensive database of variation for conservation efforts.
0
Citation602
0
Save
0

Complete Khoisan and Bantu genomes from southern Africa

Stephan Schuster et al.Feb 1, 2010
The complete genome sequences of an indigenous hunter-gatherer from Namibia's Kalahari Desert and of a Bantu from South Africa are presented in this issue, together with protein-coding regions from three other hunter-gatherer groups from the Kalahari. Analysis of genetic variance in what is probably the oldest known modern human lineage will contribute to understanding human diversity, and facilitate the inclusion of southern Africans in medical genomics research projects. Initial observations from the data include the fact that the Bushmen seem more different from each other, in terms of nucleotide substitutions, than typical Asians and Europeans. More speculatively, variants between these genomes and the existing data sets may point to genetic adaptations for an agricultural lifestyle. Until now, fully sequenced human genomes of the indigenous hunter-gatherer peoples of southern Africa have been limited to recently diverged populations. The complete genome sequences of an indigenous hunter-gatherer from the Kalahari Desert and of a Bantu from southern Africa are now presented. The extent of whole-genome and exome diversity is characterized; the observed genomic differences may help to pinpoint genetic adaptations to an agricultural lifestyle. The genetic structure of the indigenous hunter-gatherer peoples of southern Africa, the oldest known lineage of modern human, is important for understanding human diversity. Studies based on mitochondrial1 and small sets of nuclear markers2 have shown that these hunter-gatherers, known as Khoisan, San, or Bushmen, are genetically divergent from other humans1,3. However, until now, fully sequenced human genomes have been limited to recently diverged populations4,5,6,7,8. Here we present the complete genome sequences of an indigenous hunter-gatherer from the Kalahari Desert and a Bantu from southern Africa, as well as protein-coding regions from an additional three hunter-gatherers from disparate regions of the Kalahari. We characterize the extent of whole-genome and exome diversity among the five men, reporting 1.3 million novel DNA differences genome-wide, including 13,146 novel amino acid variants. In terms of nucleotide substitutions, the Bushmen seem to be, on average, more different from each other than, for example, a European and an Asian. Observed genomic differences between the hunter-gatherers and others may help to pinpoint genetic adaptations to an agricultural lifestyle. Adding the described variants to current databases will facilitate inclusion of southern Africans in medical research efforts, particularly when family and medical histories can be correlated with genome-wide data.
0
Citation493
0
Save
0

Polar and brown bear genomes reveal ancient admixture and demographic footprints of past climate change

Webb Miller et al.Jul 23, 2012
Polar bears (PBs) are superbly adapted to the extreme Arctic environment and have become emblematic of the threat to biodiversity from global climate change. Their divergence from the lower-latitude brown bear provides a textbook example of rapid evolution of distinct phenotypes. However, limited mitochondrial and nuclear DNA evidence conflicts in the timing of PB origin as well as placement of the species within versus sister to the brown bear lineage. We gathered extensive genomic sequence data from contemporary polar, brown, and American black bear samples, in addition to a 130,000- to 110,000-y old PB, to examine this problem from a genome-wide perspective. Nuclear DNA markers reflect a species tree consistent with expectation, showing polar and brown bears to be sister species. However, for the enigmatic brown bears native to Alaska's Alexander Archipelago, we estimate that not only their mitochondrial genome, but also 5-10% of their nuclear genome, is most closely related to PBs, indicating ancient admixture between the two species. Explicit admixture analyses are consistent with ancient splits among PBs, brown bears and black bears that were later followed by occasional admixture. We also provide paleodemographic estimates that suggest bear evolution has tracked key climate events, and that PB in particular experienced a prolonged and dramatic decline in its effective population size during the last ca. 500,000 years. We demonstrate that brown bears and PBs have had sufficiently independent evolutionary histories over the last 4-5 million years to leave imprints in the PB nuclear genome that likely are associated with ecological adaptation to the Arctic environment.
0
Citation346
0
Save
0

Sequencing the nuclear genome of the extinct woolly mammoth

Webb Miller et al.Nov 1, 2008
In 1994, two independent groups extracted DNA from several Pleistocene epoch mammoths and noted differences among individual specimens. Subsequently, DNA sequences have been published for a number of extinct species. However, such ancient DNA is often fragmented and damaged, and studies to date have typically focused on short mitochondrial sequences, never yielding more than a fraction of a per cent of any nuclear genome. Here we describe 4.17 billion bases (Gb) of sequence from several mammoth specimens, 3.3 billion (80%) of which are from the woolly mammoth (Mammuthus primigenius) genome and thus comprise an extensive set of genome-wide sequence from an extinct species. Our data support earlier reports that elephantid genomes exceed 4 Gb. The estimated divergence rate between mammoth and African elephant is half of that between human and chimpanzee. The observed number of nucleotide differences between two particular mammoths was approximately one-eighth of that between one of them and the African elephant, corresponding to a separation between the mammoths of 1.5-2.0 Myr. The estimated probability that orthologous elephant and mammoth amino acids differ is 0.002, corresponding to about one residue per protein. Differences were discovered between mammoth and African elephant in amino-acid positions that are otherwise invariant over several billion years of combined mammalian evolution. This study shows that nuclear genome sequencing of extinct species can reveal population differences not evident from the fossil record, and perhaps even discover genetic factors that affect extinction.
0
Citation342
0
Save
0

Differences in Co-Expression of T Cell Co-Inhibitory and Co-Stimulatory Molecules with PD-1 Across Different Human Cancers

Ahmad Tarhini et al.Jun 10, 2024
Abstract Purpose: The promise of immune checkpoint inhibitor (ICI) therapy underlines the importance of comprehensively investigating the rationale for combinations with diverse immune modulators across different cancer types. Given the progress made with PD1 blockade to date, we examined mRNA co-expression levels of PD-1 with 13 immune checkpoints, including co-inhibitory receptors (LAG3, CTLA4, PD-L1, TIGIT, TIM3, VISTA, BTLA) and co-stimulatory molecules (CD28, OX40, GITR, CD137, CD27, HVEM), using RNA-Seq by Expectation-Maximization (RSEM). Methods: We analyzed real-world clinical and transcriptomic data from the Total Cancer Care Protocol (NCT03977402) and Avatar® project of patients with cancer treated within the Oncology Research Information Exchange Network (ORIEN) network. Using anti-PD1 as a backbone, we intended to investigate the rationale for combinations in different cancers. Pearson's R coefficients and associated P-values were calculated using SciPy 1.7.0. Results: The co-expression of PD1 with 13 immune checkpoints and PD-L1 varies across selected malignancies included. In cutaneous melanoma, PD1 expression correlated significantly with four co-inhibitory receptors (LAG3, TIM3, TIGIT, VISTA) and one co-stimulatory molecule (CD137). In urothelial carcinoma, PD1 expression significantly correlated with four co-inhibitory (TIGIT, CTLA4, LAG3, VISTA) and four co-stimulatory (OX40, CD27, CD137, HVEM) molecules. In pancreatic adenocarcinoma, only CD28 showed a significant correlation with PD1 expression. No significant correlations with PD1 expression were found in the ovarian cancer cohort. Notably, melanoma and urothelial carcinoma exhibited a dominant co-expression of co-inhibitory molecules with PD1, indicative of exhausted T cells, in contrast to the co-stimulatory molecule dominance in ovarian and pancreatic cancers, suggesting less differentiated T cells. Conclusions: Our findings highlight the potential for diverse combination strategies in immunotherapy, particularly with PD1 blockade, across various cancers.
0

Augmented Interval List: a novel data structure for efficient genomic interval search

Jianglin Feng et al.Mar 30, 2019
Abstract Motivation Genomic data is frequently stored as segments or intervals. Because this data type is so common, interval-based comparisons are fundamental to genomic analysis. As the volume of available genomic data grows, developing efficient and scalable methods for searching interval data is necessary. Results We present a new data structure, the augmented interval list (AIList), to enumerate intersections between a query interval q and an interval set R . An AIList is constructed by first sorting R as a list by the interval start coordinate, then decomposing it into a few approximately flattened components (sublists), and then augmenting each sublist with the running maximum interval end . The query time for AIList is O ( log 2 N + n + m ), where n is the number of overlaps between R and q, N is the number of intervals in the set R , and m is the average number of extra comparisons required to find the n overlaps. Tested on real genomic interval datasets, AIList code runs 5 - 18 times faster than standard high-performance code based on augmented interval-trees (AITree), nested containment lists (NCList), or R-trees (BEDTools). For large datasets, the memory-usage for AIList is 4% - 60% of other methods. The AIList data structure, therefore, provides a significantly improved fundamental operation for highly scalable genomic data analysis. Availability An implementation of the AIList data structure with both construction and search algorithms is available at code.databio.org/AIList .
Load More