TG
Tina Graves-Lindsay
Author with expertise in RNA Sequencing Data Analysis
Achievements
Cited Author
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
7
(57% Open Access)
Cited by:
2,001
h-index:
16
/
i10-index:
17
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
546

The structure, function, and evolution of a complete human chromosome 8

Glennis Logsdon et al.Sep 8, 2020
ABSTRACT The complete assembly of each human chromosome is essential for understanding human biology and evolution. Using complementary long-read sequencing technologies, we complete the first linear assembly of a human autosome, chromosome 8. Our assembly resolves the sequence of five previously long-standing gaps, including a 2.08 Mbp centromeric α-satellite array, a 644 kbp defensin copy number polymorphism important for disease risk, and an 863 kbp variable number tandem repeat at chromosome 8q21.2 that can function as a neocentromere. We show that the centromeric α-satellite array is generally methylated except for a 73 kbp hypomethylated region of diverse higher-order α-satellite enriched with CENP-A nucleosomes, consistent with the location of the kinetochore. Using a dual long-read sequencing approach, we complete the assembly of the orthologous chromosome 8 centromeric regions in chimpanzee, orangutan, and macaque for the first time to reconstruct its evolutionary history. Comparative and phylogenetic analyses show that the higher-order α-satellite structure evolved specifically in the great ape ancestor, and the centromeric region evolved with a layered symmetry, with more ancient higher-order repeats located at the periphery adjacent to monomeric α-satellites. We estimate that the mutation rate of centromeric satellite DNA is accelerated at least 2.2-fold, and this acceleration extends beyond the higher-order α-satellite into the flanking sequence.
546
Citation29
0
Save
39

A chromosome level genome ofAstyanax mexicanussurface fish for comparing population-specific genetic differences contributing to trait evolution

Wesley Warren et al.Jul 6, 2020
Abstract Identifying the genetic factors that underlie complex traits is central to understanding the mechanistic underpinnings of evolution. In nature, adaptation to severe environmental change, such as encountered following colonization of caves, has dramatically altered genomes of species over varied time spans. Genomic sequencing approaches have identified mutations associated with troglomorphic trait evolution, but the functional impacts of these mutations remain poorly understood. The Mexican Tetra, Astyanax mexicanus , is abundant in the surface waters of northeastern Mexico, and also inhabits at least 30 different caves in the region. Cave-dwelling A. mexicanus morphs are well adapted to subterranean life and many populations appear to have evolved troglomorphic traits independently, while the surface-dwelling populations can be used as a proxy for the ancestral form. Here we present a high-resolution, chromosome-level surface fish genome, enabling the first genome-wide comparison between surface fish and cavefish populations. Using this resource, we performed quantitative trait locus (QTL) mapping analyses for pigmentation and eye size and found new candidate genes for eye loss such as dusp26 . We used CRISPR gene editing in A. mexicanus to confirm the essential role of a gene within an eye size QTL, rx3 , in eye formation. We also generated the first genome-wide evaluation of deletion variability that includes an analysis of the impact on protein-coding genes across cavefish populations to gain insight into this potential source of cave adaptation. The new surface fish genome reference now provides a more complete resource for comparative, functional, developmental and genetic studies of drastic trait differences within a species.
39
Citation1
0
Save
0

Sequencing of the human IG light chain loci from a hydatidiform mole BAC library reveals locus-specific signatures of genetic diversity

Corey Watson et al.Jul 3, 2014
Germline variation at immunoglobulin gene (IG) loci is critical for pathogen-mediated immunity, but establishing complete reference sequences in these regions is problematic because of segmental duplications and somatically rearranged source DNA. We sequenced BAC clones from the essentially haploid hydatidiform mole, CHM1, across the light chain IG loci, kappa (IGK) and lambda (IGL), creating single haplotype representations of these regions. The IGL haplotype is 1.25Mb of contiguous sequence with four novel V gene and one novel C gene alleles and an 11.9kbp insertion. The IGK haplotype consists of two 644kbp proximal and 466kbp distal contigs separated by a gap also present in the reference genome sequence. Our effort added an additional 49kbp of unique sequence extending into this gap. The IGK haplotype contains six novel V gene and one novel J gene alleles and a 16.7kbp region with increased sequence identity between the two IGK contigs, exhibiting signatures of interlocus gene conversion. Our data facilitated the first comparison of nucleotide diversity between the light and IG heavy (IGH) chain haplotypes within a single genome, revealing a three to six fold enrichment in the IGH locus, supporting the theory that the heavy chain may be more important in determining antigenic specificity.
0

Single haplotype assembly of the human genome from a hydatidiform mole

Karyn Steinberg et al.Jul 3, 2014
An accurate and complete reference human genome sequence assembly is essential for accurately interpreting individual genomes and associating sequence variation with disease phenotypes. While the current reference genome sequence is of very high quality, gaps and misassemblies remain due to biological and technical complexities. Large repetitive sequences and complex allelic diversity are the two main drivers of assembly error. Although increasing the length of sequence reads and library fragments can help overcome these problems, even the longest available reads do not resolve all regions of the human genome. In order to overcome the issue of allelic diversity, we used genomic DNA from an essentially haploid hydatidiform mole, CHM1. We utilized several resources from this DNA including a set of end-sequenced and indexed BAC clones, an optical map, and 100X whole genome shotgun (WGS) sequence coverage using short (Illumina) read pairs. We used the WGS sequence and the GRCh37 reference assembly to create a sequence assembly of the CHM1 genome. We subsequently incorporated 382 finished CHORI-17 BAC clone sequences to generate a second draft assembly, CHM1_1.1 (NCBI AssemblyDB GCA_000306695.2). Analysis of gene and repeat content show this assembly to be of excellent quality and contiguity, and comparisons to ClinVar and the NHGRI GWAS catalog show that the CHM1 genome does not harbor an excess of deleterious alleles. However, comparison to assembly-independent resources, such as BAC clone end sequences and long reads generated by a different sequencing technology (PacBio), indicate misassembled regions. The great majority of these regions is enriched for structural variation and segmental duplication, and can be resolved in the future by sequencing BAC clone tiling paths. This publicly available first generation assembly will be integrated into the Genome Reference Consortium (GRC) curation framework for further improvement, with the ultimate goal being a completely finished gap-free assembly.