NO
Nathan Olson
Author with expertise in RNA Sequencing Data Analysis
Achievements
Cited Author
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
28
(75% Open Access)
Cited by:
4,394
h-index:
32
/
i10-index:
42
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Accurate circular consensus long-read sequencing improves variant detection and assembly of a human genome

Aaron Wenger et al.Aug 12, 2019
The DNA sequencing technologies in use today produce either highly accurate short reads or less-accurate long reads. We report the optimization of circular consensus sequencing (CCS) to improve the accuracy of single-molecule real-time (SMRT) sequencing (PacBio) and generate highly accurate (99.8%) long high-fidelity (HiFi) reads with an average length of 13.5 kilobases (kb). We applied our approach to sequence the well-characterized human HG002/NA24385 genome and obtained precision and recall rates of at least 99.91% for single-nucleotide variants (SNVs), 95.98% for insertions and deletions <50 bp (indels) and 95.99% for structural variants. Our CCS method matches or exceeds the ability of short-read sequencing to detect small variants and structural variants. We estimate that 2,434 discordances are correctable mistakes in the ‘genome in a bottle’ (GIAB) benchmark set. Nearly all (99.64%) variants can be phased into haplotypes, further improving variant detection. De novo genome assembly using CCS reads alone produced a contiguous and accurate genome with a contig N50 of >15 megabases (Mb) and concordance of 99.997%, substantially outperforming assembly with less-accurate long reads. High-fidelity reads improve variant detection and genome assembly on the PacBio platform.
0
Citation1,171
0
Save
0

A robust benchmark for detection of germline large deletions and insertions

Justin Zook et al.Jun 15, 2020
New technologies and analysis methods are enabling genomic structural variants (SVs) to be detected with ever-increasing accuracy, resolution and comprehensiveness. To help translate these methods to routine research and clinical practice, we developed a sequence-resolved benchmark set for identification of both false-negative and false-positive germline large insertions and deletions. To create this benchmark for a broadly consented son in a Personal Genome Project trio with broadly available cells and DNA, the Genome in a Bottle Consortium integrated 19 sequence-resolved variant calling methods from diverse technologies. The final benchmark set contains 12,745 isolated, sequence-resolved insertion (7,281) and deletion (5,464) calls ≥50 base pairs (bp). The Tier 1 benchmark regions, for which any extra calls are putative false positives, cover 2.51 Gbp and 5,262 insertions and 4,095 deletions supported by ≥1 diploid assembly. We demonstrate that the benchmark set reliably identifies false negatives and false positives in high-quality SV callsets from short-, linked- and long-read sequencing and optical mapping. Detection of structural variants in the human genome is facilitated by a benchmark set of large deletions and insertions.
0
Citation305
0
Save
0

A robust benchmark for germline structural variant detection

Justin Zook et al.Jun 9, 2019
Abstract New technologies and analysis methods are enabling genomic structural variants (SVs) to be detected with ever-increasing accuracy, resolution, and comprehensiveness. Translating these methods to routine research and clinical practice requires robust benchmark sets. We developed the first benchmark set for identification of both false negative and false positive germline SVs, which complements recent efforts emphasizing increasingly comprehensive characterization of SVs. To create this benchmark for a broadly consented son in a Personal Genome Project trio with broadly available cells and DNA, the Genome in a Bottle (GIAB) Consortium integrated 19 sequence-resolved variant calling methods, both alignment- and de novo assembly-based, from short-, linked-, and long-read sequencing, as well as optical and electronic mapping. The final benchmark set contains 12745 isolated, sequence-resolved insertion and deletion calls ≥50 base pairs (bp) discovered by at least 2 technologies or 5 callsets, genotyped as heterozygous or homozygous variants by long reads. The Tier 1 benchmark regions, for which any extra calls are putative false positives, cover 2.66 Gbp and 9641 SVs supported by at least one diploid assembly. Support for SVs was assessed using svviz with short-, linked-, and long-read sequence data. In general, there was strong support from multiple technologies for the benchmark SVs, with 90 % of the Tier 1 SVs having support in reads from more than one technology. The Mendelian genotype error rate was 0.3 %, and genotype concordance with manual curation was >98.7 %. We demonstrate the utility of the benchmark set by showing it reliably identifies both false negatives and false positives in high-quality SV callsets from short-, linked-, and long-read sequencing and optical mapping.
0
Citation63
0
Save
1

Pangenome graph construction from genome alignments with Minigraph-Cactus

Glenn Hickey et al.May 10, 2023
Pangenome references address biases of reference genomes by storing a representative set of diverse haplotypes and their alignment, usually as a graph. Alternate alleles determined by variant callers can be used to construct pangenome graphs, but advances in long-read sequencing are leading to widely available, high-quality phased assemblies. Constructing a pangenome graph directly from assemblies, as opposed to variant calls, leverages the graph’s ability to represent variation at different scales. Here we present the Minigraph-Cactus pangenome pipeline, which creates pangenomes directly from whole-genome alignments, and demonstrate its ability to scale to 90 human haplotypes from the Human Pangenome Reference Consortium. The method builds graphs containing all forms of genetic variation while allowing use of current mapping and genotyping tools. We measure the effect of the quality and completeness of reference genomes used for analysis within the pangenomes and show that using the CHM13 reference from the Telomere-to-Telomere Consortium improves the accuracy of our methods. We also demonstrate construction of a Drosophila melanogaster pangenome. Constructing genome graphs directly from genome assemblies overcomes single-reference bias.
1
Citation61
0
Save
Load More