GC
Gabriele Cerutti
Author with expertise in Coronavirus Disease 2019 Research
Achievements
Cited Author
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
19
(89% Open Access)
Cited by:
1,588
h-index:
20
/
i10-index:
25
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
1

Increased resistance of SARS-CoV-2 variant P.1 to antibody neutralization

Pengfei Wang et al.Apr 19, 2021
Highlights•P.1 is refractory to multiple neutralizing mAbs, including three out of the four with EUA•P.1 is relatively resistant to neutralization by convalescent plasma and vaccinee sera•Cryo-EM structure of P.1 spike trimer reveals exclusively one-RBD-up conformationSummaryThe emergence of SARS-CoV-2 variants has raised concerns about altered sensitivity to antibody-mediated immunity. The relative resistance of SARS-CoV-2 variants B.1.1.7 and B.1.351 to antibody neutralization has been recently investigated. We report that another emergent variant from Brazil, P.1, is not only refractory to multiple neutralizing monoclonal antibodies but also more resistant to neutralization by convalescent plasma and vaccinee sera. The magnitude of resistance is greater for monoclonal antibodies than vaccinee sera and evident with both pseudovirus and authentic P.1 virus. The cryoelectron microscopy structure of a soluble prefusion-stabilized spike reveals that the P.1 trimer adopts exclusively a conformation in which one of the receptor-binding domains is in the "up" position, which is known to facilitate binding to entry receptor ACE2. The functional impact of P.1 mutations thus appears to arise from local changes instead of global conformational alterations. The P.1 variant threatens current antibody therapies but less so protective vaccine efficacy.Graphical abstract
1
Citation585
0
Save
0

Cryo-EM Structures of SARS-CoV-2 Spike without and with ACE2 Reveal a pH-Dependent Switch to Mediate Endosomal Positioning of Receptor-Binding Domains

Tongqing Zhou et al.Nov 17, 2020
The SARS-CoV-2 spike employs mobile receptor-binding domains (RBDs) to engage the human ACE2 receptor and to facilitate virus entry, which can occur through low-pH-endosomal pathways. To understand how ACE2 binding and low pH affect spike conformation, we determined cryo-electron microscopy structures—at serological and endosomal pH—delineating spike recognition of up to three ACE2 molecules. RBDs freely adopted "up" conformations required for ACE2 interaction, primarily through RBD movement combined with smaller alterations in neighboring domains. In the absence of ACE2, single-RBD-up conformations dominated at pH 5.5, resolving into a solitary all-down conformation at lower pH. Notably, a pH-dependent refolding region (residues 824–858) at the spike-interdomain interface displayed dramatic structural rearrangements and mediated RBD positioning through coordinated movements of the entire trimer apex. These structures provide a foundation for understanding prefusion-spike mechanics governing endosomal entry; we suggest that the low pH all-down conformation potentially facilitates immune evasion from RBD-up binding antibody.
22

Potent Neutralizing Antibodies Directed to Multiple Epitopes on SARS-CoV-2 Spike

Lihong Liu et al.Jun 18, 2020
Abstract The SARS-CoV-2 pandemic rages on with devasting consequences on human lives and the global economy 1,2 . The discovery and development of virus-neutralizing monoclonal antibodies could be one approach to treat or prevent infection by this novel coronavirus. Here we report the isolation of 61 SARS-CoV-2-neutralizing monoclonal antibodies from 5 infected patients hospitalized with severe disease. Among these are 19 antibodies that potently neutralized the authentic SARS-CoV-2 in vitro , 9 of which exhibited exquisite potency, with 50% virus-inhibitory concentrations of 0.7 to 9 ng/mL. Epitope mapping showed this collection of 19 antibodies to be about equally divided between those directed to the receptor-binding domain (RBD) and those to the N-terminal domain (NTD), indicating that both of these regions at the top of the viral spike are immunogenic. In addition, two other powerful neutralizing antibodies recognized quaternary epitopes that are overlapping with the domains at the top of the spike. Cryo-electron microscopy reconstructions of one antibody targeting RBD, a second targeting NTD, and a third bridging two separate RBDs revealed recognition of the closed, “all RBD-down” conformation of the spike. Several of these monoclonal antibodies are promising candidates for clinical development as potential therapeutic and/or prophylactic agents against SARS-CoV-2.
22
Paper
Citation43
0
Save
13

Paired heavy and light chain signatures contribute to potent SARS-CoV-2 neutralization in public antibody responses

Bailey Banach et al.Jan 3, 2021
Understanding protective mechanisms of antibody recognition can inform vaccine and therapeutic strategies against SARS-CoV-2. We discovered a new antibody, 910-30, that targets the SARS-CoV-2 ACE2 receptor binding site as a member of a public antibody response encoded by IGHV3-53/IGHV3-66 genes. We performed sequence and structural analyses to explore how antibody features correlate with SARS-CoV-2 neutralization. Cryo-EM structures of 910-30 bound to the SARS-CoV-2 spike trimer revealed its binding interactions and ability to disassemble spike. Despite heavy chain sequence similarity, biophysical analyses of IGHV3-53/3-66 antibodies highlighted the importance of native heavy:light pairings for ACE2 binding competition and for SARS-CoV-2 neutralization. We defined paired heavy:light sequence signatures and determined antibody precursor prevalence to be ~1 in 44,000 human B cells, consistent with public antibody identification in several convalescent COVID-19 patients. These data reveal key structural and functional neutralization features in the IGHV3-53/3-66 public antibody class to accelerate antibody-based medical interventions against SARS-CoV-2.A molecular study of IGHV3-53/3-66 public antibody responses reveals critical heavy and light chain features for potent neutralizationCryo-EM analyses detail the structure of a novel public antibody class member, antibody 910-30, in complex with SARS-CoV-2 spike trimerCryo-EM data reveal that 910-30 can both bind assembled trimer and can disassemble the SARS-CoV-2 spikeSequence-structure-function signatures defined for IGHV3-53/3-66 class antibodies including both heavy and light chainsIGHV3-53/3-66 class precursors have a prevalence of 1:44,000 B cells in healthy human antibody repertoires.
13
Citation27
0
Save
6

Modular basis for potent SARS-CoV-2 neutralization by a prevalent VH1-2-derived antibody class

Micah Rapp et al.Jan 11, 2021
SUMMARY Antibodies with heavy chains that derive from the VH1-2 gene constitute some of the most potent SARS-CoV-2-neutralizing antibodies yet identified. To provide insight into whether these genetic similarities inform common modes of recognition, we determined structures of the SARS-CoV-2 spike in complex with three VH1-2-derived antibodies: 2-15, 2-43, and H4. All three utilized VH1-2-encoded motifs to recognize the receptor-binding domain (RBD), with heavy chain N53I enhancing binding and light chain tyrosines recognizing F486 RBD . Despite these similarities, class members bound both RBD-up and -down conformations of the spike, with a subset of antibodies utilizing elongated CDRH3s to recognize glycan N 343 on a neighboring RBD – a quaternary interaction accommodated by an increase in RBD separation of up to 12 Å. The VH1-2-antibody class thus utilizes modular recognition encoded by modular genetic elements to effect potent neutralization, with VH-gene component specifying recognition of RBD and CDRH3 component specifying quaternary interactions. Highlights Determine structures of VH1-2-derived antibodies 2-43, 2-15, and H4 in complex with SARS-CoV-2 spike Define a multi-donor VH1-2-antibody class with modular components for RBD and quaternary recognition Reveal structural basis of RBD-up and RBD-down recognition within the class Show somatic hypermutations and avidity to be critical for potency Delineate changes in spike conformation induced by CDRH3-mediated quaternary recognition
6
Citation8
0
Save
40

Structural basis for antibody resistance to SARS-CoV-2 omicron variant

Gabriele Cerutti et al.Dec 23, 2021
SUMMARY The recently reported B.1.1.529 Omicron variant of SARS-CoV-2 includes 34 mutations in the spike protein relative to the Wuhan strain that initiated the COVID-19 pandemic, including 15 mutations in the receptor binding domain (RBD). Functional studies have shown omicron to substantially escape the activity of many SARS-CoV-2-neutralizing antibodies. Here we report a 3.1 Å resolution cryo-electron microscopy (cryo-EM) structure of the Omicron spike protein ectodomain. The structure depicts a spike that is exclusively in the 1-RBD-up conformation with increased mobility and inter-protomer asymmetry. Many mutations cause steric clashes and/or altered interactions at antibody binding surfaces, whereas others mediate changes of the spike structure in local regions to interfere with antibody recognition. Overall, the structure of the omicron spike reveals how mutations alter its conformation and explains its extraordinary ability to evade neutralizing antibodies. Highlights SARS-CoV-2 omicron spike exclusively adopts 1-RBD-up conformation Omicron substitutions alter conformation and mobility of RBD A subset of omicron mutations change the local conformation of spike The structure reveals the basis of antibody neutralization escape
40
Citation7
0
Save
Load More