AC
Alex Chen
Author with expertise in Coronavirus Disease 2019 Research
Achievements
Open Access Advocate
Cited Author
Key Stats
Upvotes received:
0
Publications:
20
(85% Open Access)
Cited by:
202
h-index:
40
/
i10-index:
92
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
8k

Broadly neutralizing antibodies overcome SARS-CoV-2 Omicron antigenic shift

Elisabetta Cameroni et al.Dec 14, 2021
SUMMARY The recently emerged SARS-CoV-2 Omicron variant harbors 37 amino acid substitutions in the spike (S) protein, 15 of which are in the receptor-binding domain (RBD), thereby raising concerns about the effectiveness of available vaccines and antibody therapeutics. Here, we show that the Omicron RBD binds to human ACE2 with enhanced affinity relative to the Wuhan-Hu-1 RBD and acquires binding to mouse ACE2. Severe reductions of plasma neutralizing activity were observed against Omicron compared to the ancestral pseudovirus for vaccinated and convalescent individuals. Most (26 out of 29) receptor-binding motif (RBM)-directed monoclonal antibodies (mAbs) lost in vitro neutralizing activity against Omicron, with only three mAbs, including the ACE2-mimicking S2K146 mAb 1 , retaining unaltered potency. Furthermore, a fraction of broadly neutralizing sarbecovirus mAbs recognizing antigenic sites outside the RBM, including sotrovimab 2 , S2X259 3 and S2H97 4 , neutralized Omicron. The magnitude of Omicron-mediated immune evasion and the acquisition of binding to mouse ACE2 mark a major SARS-CoV-2 mutational shift. Broadly neutralizing sarbecovirus mAbs recognizing epitopes conserved among SARS-CoV-2 variants and other sarbecoviruses may prove key to controlling the ongoing pandemic and future zoonotic spillovers.
8k
Citation53
0
Save
88

A single immunization with spike-functionalized ferritin vaccines elicits neutralizing antibody responses against SARS-CoV-2 in mice

Alex Chen et al.Aug 28, 2020
Abstract Development of a safe and effective SARS-CoV-2 vaccine is a public health priority. We designed subunit vaccine candidates using self-assembling ferritin nanoparticles displaying one of two multimerized SARS-CoV-2 spikes: full-length ectodomain (S-Fer) or a C-terminal 70 amino-acid deletion (SΔC-Fer). Ferritin is an attractive nanoparticle platform for production of vaccines and ferritin-based vaccines have been investigated in humans in two separate clinical trials. We confirmed proper folding and antigenicity of spike on the surface of ferritin by cryo-EM and binding to conformation-specific monoclonal antibodies. After a single immunization of mice with either of the two spike ferritin particles, a lentiviral SARS-CoV-2 pseudovirus assay revealed mean neutralizing antibody titers at least 2-fold greater than those in convalescent plasma from COVID-19 patients. Additionally, a single dose of SΔC-Fer elicited significantly higher neutralizing responses as compared to immunization with the spike receptor binding domain (RBD) monomer or spike ectodomain trimer alone. After a second dose, mice immunized with SΔC-Fer exhibited higher neutralizing titers than all other groups. Taken together, these results demonstrate that multivalent presentation of SARS-CoV-2 spike on ferritin can notably enhance elicitation of neutralizing antibodies, thus constituting a viable strategy for single-dose vaccination against COVID-19.
88
Citation19
0
Save
44

De novo design of ACE2 protein decoys to neutralize SARS-CoV-2

Thomas Linsky et al.Aug 3, 2020
There is an urgent need for the ability to rapidly develop effective countermeasures for emerging biological threats, such as the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) that causes the ongoing coronavirus disease 2019 (COVID-19) pandemic. We have developed a generalized computational design strategy to rapidly engineer de novo proteins that precisely recapitulate the protein surface targeted by biological agents, like viruses, to gain entry into cells. The designed proteins act as decoys that block cellular entry and aim to be resilient to viral mutational escape. Using our novel platform, in less than ten weeks, we engineered, validated, and optimized de novo protein decoys of human angiotensin-converting enzyme 2 (hACE2), the membrane-associated protein that SARS-CoV-2 exploits to infect cells. Our optimized designs are hyperstable de novo proteins (∼18-37 kDa), have high affinity for the SARS-CoV-2 receptor binding domain (RBD) and can potently inhibit the virus infection and replication in vitro. Future refinements to our strategy can enable the rapid development of other therapeutic de novo protein decoys, not limited to neutralizing viruses, but to combat any agent that explicitly interacts with cell surface proteins to cause disease.
12

A cGAMP-containing hydrogel for prolonged SARS-CoV-2 RBD subunit vaccine exposure induces a broad and potent humoral response

Volker Böhnert et al.Jul 5, 2021
Abstract The receptor binding domain (RBD) of the SARS-CoV-2 virus spike protein has emerged as a promising target for generation of neutralizing antibodies. Although the RBD subunit is more stable than its encoding mRNA, RBD-based subunit vaccines have been hampered by RBD’s poor immunogenicity. We hypothesize that this limitation can be overcome by sustained co-administration with a more potent and optimized adjuvant than standard adjuvants. The endogenous innate immune second messenger, cGAMP, holds promise as potent activator of the anti-viral STING pathway. Unfortunately, delivery of cGAMP as a therapeutic exhibits poor performance due to poor pharmacokinetics and pharmacodynamics from rapid excretion and degradation by its hydrolase ENPP1. To overcome these limitations, we sought to create an artificial immunological niche enabling slow release of cGAMP and RBD to mimic natural infections in which immune activating molecules are co-localized with antigen. Specifically, we co-encapsulated cGAMP and RBD in an injectable polymer-nanoparticle (PNP) hydrogel. This cGAMP-adjuvanted hydrogel vaccine elicited more potent, durable, and broad antibody responses with improved neutralization as compared to dose-matched bolus controls and hydrogel-based vaccines lacking cGAMP. The cGAMP-adjuvanted hydrogel platform developed is suitable for delivery of other antigens and may provide enhanced immunity against a broad range of pathogens.
12
Citation10
0
Save
23

Hydrogel-based slow release of a receptor-binding domain subunit vaccine elicits neutralizing antibody responses against SARS-CoV-2

Emily Gale et al.Apr 1, 2021
Abstract The development of effective vaccines that can be rapidly manufactured and distributed worldwide is necessary to mitigate the devastating health and economic impacts of pandemics like COVID-19. The receptor-binding domain (RBD) of the SARS-CoV-2 spike protein, which mediates host cell entry of the virus, is an appealing antigen for subunit vaccines because it is efficient to manufacture, highly stable, and a target for neutralizing antibodies. Unfortunately, RBD is poorly immunogenic. While most subunit vaccines are commonly formulated with adjuvants to enhance their immunogenicity, we found that clinically-relevant adjuvants Alum, AddaVax, and CpG/Alum were unable to elicit neutralizing responses following a prime-boost immunization. Here we show that sustained delivery of an RBD subunit vaccine comprising CpG/Alum adjuvant in an injectable polymer-nanoparticle (PNP) hydrogel elicited potent anti-RBD and anti-spike antibody titers, providing broader protection against SARS-CoV-2 variants of concern compared to bolus administration of the same vaccine and vaccines comprising other clinically-relevant adjuvant systems. Notably, a SARS-CoV-2 spike-pseudotyped lentivirus neutralization assay revealed that hydrogel-based vaccines elicited potent neutralizing responses when bolus vaccines did not. Together, these results suggest that slow delivery of RBD subunit vaccines with PNP hydrogels can significantly enhance the immunogenicity of RBD and induce neutralizing humoral immunity.
23
Citation4
0
Save
5

Subcutaneous delivery of an antibody against SARS-CoV-2 from a supramolecular hydrogel depot

Catherine Kasse et al.May 25, 2022
Prolonged maintenance of therapeutically-relevant levels of broadly neutralizing antibodies (bnAbs) is necessary to enable passive immunization against infectious disease. Unfortunately, protection only lasts for as long as these bnAbs remain present at a sufficiently high concentration in the body. Poor pharmacokinetics and burdensome administration are two challenges that need to be addressed in order to make pre- and post-exposure prophylaxis with bnAbs feasible and effective. In this work, we develop a supramolecular hydrogel as an injectable, subcutaneous depot to encapsulate and deliver antibody drug cargo. This polymer-nanoparticle (PNP) hydrogel exhibits shear-thinning and self-healing properties that are required for an injectable drug delivery vehicle. In vitro drug release assays and diffusion measurements indicate that the PNP hydrogels prevent burst release and slow the release of encapsulated antibodies. Delivery of bnAbs against SARS-CoV-2 from PNP hydrogels is compared to standard routes of administration in a preclinical mouse model. We develop a multi-compartment model to understand the ability of these subcutaneous depot materials to modulate the pharmacokinetics of released antibodies; the model is extrapolated to explore the requirements needed for novel materials to successfully deliver relevant antibody therapeutics with different pharmacokinetic characteristics.
5
Paper
Citation3
0
Save
23

Neutralizing antibodies targeting the SARS-CoV-2 receptor binding domain isolated from a naïve human antibody library

Benjamin Bell et al.Jan 8, 2021
Abstract Infection with SARS-CoV-2 elicits robust antibody responses in some patients, with a majority of the response directed at the receptor binding domain (RBD) of the spike surface glycoprotein. Remarkably, many patient-derived antibodies that potently inhibit viral infection harbor few to no mutations from the germline, suggesting that naïve antibody libraries are a viable means for discovery of novel SARS-CoV-2 neutralizing antibodies. Here, we used a yeast surface-display library of human naïve antibodies to isolate and characterize three novel neutralizing antibodies that target the RBD: one that blocks interaction with angiotensin-converting enzyme 2 (ACE2), the human receptor for SARS-CoV-2, and two that target other epitopes on the RBD. These three antibodies neutralized SARS-CoV-2 spike-pseudotyped lentivirus with IC 50 values as low as 60 ng/mL in vitro . Using a biolayer interferometry-based binding competition assay, we determined that these antibodies have distinct but overlapping epitopes with antibodies elicited during natural COVID-19 infection. Taken together, these analyses highlight how in vitro selection of naïve antibodies can mimic the humoral response in vivo , yielding neutralizing antibodies and various epitopes that can be effectively targeted on the SARS-CoV-2 RBD.
23
Citation2
0
Save
Load More