LP
Lior Pachter
Author with expertise in Comprehensive Integration of Single-Cell Transcriptomic Data
California Institute of Technology, University of California, Berkeley, Pasadena City College
+ 14 more
Achievements
Cited Author
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
63
(76% Open Access)
Cited by:
7,178
h-index:
77
/
i10-index:
211
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
4

Initial sequencing and comparative analysis of the mouse genome

R Waterston et al.Dec 16, 2023
+219
E
K
R
The sequence of the mouse genome is a key informational tool for understanding the contents of the human genome and a key experimental tool for biomedical research. Here, we report the results of an international collaboration to produce a high-quality draft sequence of the mouse genome. We also present an initial comparative analysis of the mouse and human genomes, describing some of the insights that can be gleaned from the two sequences. We discuss topics including the analysis of the evolutionary forces shaping the size, structure and sequence of the genomes; the conservation of large-scale synteny across most of the genomes; the much lower extent of sequence orthology covering less than half of the genomes; the proportions of the genomes under selection; the number of protein-coding genes; the expansion of gene families related to reproduction and immunity; the evolution of proteins; and the identification of intraspecies polymorphism.
4
Paper
Citation6,592
1
Save
0

An integrated transcriptomic and epigenomic atlas of mouse primary motor cortex cell types

Zizhen Yao et al.May 6, 2020
+80
F
H
Z
Abstract Single cell transcriptomics has transformed the characterization of brain cell identity by providing quantitative molecular signatures for large, unbiased samples of brain cell populations. With the proliferation of taxonomies based on individual datasets, a major challenge is to integrate and validate results toward defining biologically meaningful cell types. We used a battery of single-cell transcriptome and epigenome measurements generated by the BRAIN Initiative Cell Census Network (BICCN) to comprehensively assess the molecular signatures of cell types in the mouse primary motor cortex (MOp). We further developed computational and statistical methods to integrate these multimodal data and quantitatively validate the reproducibility of the cell types. The reference atlas, based on more than 600,000 high quality single-cell or -nucleus samples assayed by six molecular modalities, is a comprehensive molecular account of the diverse neuronal and non-neuronal cell types in MOp. Collectively, our study indicates that the mouse primary motor cortex contains over 55 neuronal cell types that are highly replicable across analysis methods, sequencing technologies, and modalities. We find many concordant multimodal markers for each cell type, as well as thousands of genes and gene regulatory elements with discrepant transcriptomic and epigenomic signatures. These data highlight the complex molecular regulation of brain cell types and will directly enable design of reagents to target specific MOp cell types for functional analysis.
0
Citation45
0
Save
140

Museum of Spatial Transcriptomics

Lambda Moses et al.Oct 13, 2023
L
L
Abstract The function of many biological systems, such as embryos, liver lobules, intestinal villi, and tumors depends on the spatial organization of their cells. In the past decade high-throughput technologies have been developed to quantify gene expression in space, and computational methods have been developed that leverage spatial gene expression data to identify genes with spatial patterns and to delineate neighborhoods within tissues. To assess the ability and potential of spatial gene expression technologies to drive biological discovery, we present a curated database of literature on spatial transcriptomics dating back to 1987, along with a thorough analysis of trends in the field such as usage of experimental techniques, species, tissues studied and computational approaches used. Our analysis places current methods in historical context, and we derive insights about the field that can guide current research strategies. A companion supplement offers a more detailed look at the technologies and methods analyzed: https://pachterlab.github.io/LP_2021/ .
215

Depth normalization for single-cell genomics count data

A. Booeshaghi et al.Oct 24, 2023
L
Á
I
A
Single-cell genomics analysis requires normalization of feature counts that stabilizes variance while accounting for variable cell sequencing depth. We discuss some of the trade-offs present with current widely used methods, and analyze their performance on 526 single-cell RNA-seq datasets. The results lead us to recommend proportional fitting prior to log transformation followed by an additional proportional fitting.
254

RNA velocity unraveled

Gennady Gorin et al.Oct 24, 2023
L
T
M
G
Abstract We perform a thorough analysis of RNA velocity methods, with a view towards understanding the suitability of the various assumptions underlying popular implementations. In addition to providing a self-contained exposition of the underlying mathematics, we undertake simulations and perform controlled experiments on biological datasets to assess workflow sensitivity to parameter choices and underlying biology. Finally, we argue for a more rigorous approach to RNA velocity, and present a framework for Markovian analysis that points to directions for improvement and mitigation of current problems.
254
Citation19
0
Save
207

A multimodal cell census and atlas of the mammalian primary motor cortex

Ricky Adkins et al.Oct 13, 2023
+254
S
A
R
ABSTRACT We report the generation of a multimodal cell census and atlas of the mammalian primary motor cortex (MOp or M1) as the initial product of the BRAIN Initiative Cell Census Network (BICCN). This was achieved by coordinated large-scale analyses of single-cell transcriptomes, chromatin accessibility, DNA methylomes, spatially resolved single-cell transcriptomes, morphological and electrophysiological properties, and cellular resolution input-output mapping, integrated through cross-modal computational analysis. Together, our results advance the collective knowledge and understanding of brain cell type organization: First, our study reveals a unified molecular genetic landscape of cortical cell types that congruently integrates their transcriptome, open chromatin and DNA methylation maps. Second, cross-species analysis achieves a unified taxonomy of transcriptomic types and their hierarchical organization that are conserved from mouse to marmoset and human. Third, cross-modal analysis provides compelling evidence for the epigenomic, transcriptomic, and gene regulatory basis of neuronal phenotypes such as their physiological and anatomical properties, demonstrating the biological validity and genomic underpinning of neuron types and subtypes. Fourth, in situ single-cell transcriptomics provides a spatially-resolved cell type atlas of the motor cortex. Fifth, integrated transcriptomic, epigenomic and anatomical analyses reveal the correspondence between neural circuits and transcriptomic cell types. We further present an extensive genetic toolset for targeting and fate mapping glutamatergic projection neuron types toward linking their developmental trajectory to their circuit function. Together, our results establish a unified and mechanistic framework of neuronal cell type organization that integrates multi-layered molecular genetic and spatial information with multi-faceted phenotypic properties.
207
Citation18
0
Save
6

Intrinsic and extrinsic noise are distinguishable in a synthesis – export – degradation model of mRNA production

Gennady Gorin et al.Oct 24, 2023
L
G
Abstract Intrinsic and extrinsic noise sources in gene expression, originating respectively from transcriptional stochasticity and from differences between cells, complicate the determination of transcriptional models. In particularly degenerate cases, the two noise sources are altogether impossible to distinguish. However, the incorporation of downstream processing, such as the mRNA splicing and export implicated in gene expression buffering, recovers the ability to identify the relevant source of noise. We report analytical copy-number distributions, discuss the noise sources’ qualitative effects on lower moments, and provide simulation routines for both models.
0

A direct comparison of genome alignment and transcriptome pseudoalignment

Lynn Yi et al.May 6, 2020
L
P
L
L
Abstract Motivation Genome alignment of reads is the first step of most genome analysis workflows. In the case of RNA-Seq, transcriptome pseudoalignment of reads is a fast alternative to genome alignment, but the different “coordinate systems” of the genome and transcriptome have made it difficult to perform direct comparisons between the approaches. Results We have developed tools for converting genome alignments to transcriptome pseudoalignments, and conversely, for projecting transcriptome pseudoalignments to genome alignments. Using these tools, we performed a direct comparison of genome alignment with transcriptome pseudoalignment. We find that both approaches produce similar quantifications. This means that for many applications genome alignment and transcriptome pseudoalignment are interchangeable. Availability and Implementation bam2tcc is a C++14 software for converting alignments in SAM/BAM format to transcript compatibility counts (TCCs) and is available at https://github.com/pachterlab/bam2tcc . kallisto genomebam is a user option of kallisto that outputs a sorted BAM file in genome coordinates as part of transcriptome pseudoalignment. The feature has been released with kallisto v0.44.0, and is available at https://pachterlab.github.io/kallisto/ . Supplementary Material N/A Contact Lior Pachter ( lpachter@caltech.edu )
0

Voyager: exploratory single-cell genomics data analysis with geospatial statistics

Lambda Moses et al.May 26, 2024
+6
K
P
L
Exploratory spatial data analysis (ESDA) can be a powerful approach to understanding single-cell genomics datasets, but it is not yet part of standard data analysis workflows. In particular, geospatial analyses, which have been developed and refined for decades, have yet to be fully adapted and applied to spatial single-cell analysis. We introduce the Voyager platform, which systematically brings the geospatial ESDA tradition to (spatial) -omics, with local, bivariate, and multivariate spatial methods not yet commonly applied to spatial -omics, united by a uniform user interface. Using Voyager, we showcase biological insights that can be derived with its methods, such as biologically relevant negative spatial autocorrelation. Underlying Voyager is the SpatialFeatureExperiment data structure, which combines Simple Feature with SingleCellExperiment and AnnData to represent and operate on geometries bundled with gene expression data. Voyager has comprehensive tutorials demonstrating ESDA built on GitHub Actions to ensure reproducibility and scalability, using data from popular commercial technologies. Voyager is implemented in both R/Bioconductor and Python/PyPI, and features compatibility tests to ensure that both implementations return consistent results.
Load More