A new version of ResearchHub is available.Try it now
Healthy Research Rewards
ResearchHub is incentivizing healthy research behavior. At this time, first authors of open access papers are eligible for rewards. Visit the publications tab to view your eligible publications.
Got it
ZJ
Zhen Jia
Author with expertise in Neuronal Oscillations in Cortical Networks
Achievements
Cited Author
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
20
(75% Open Access)
Cited by:
1,311
h-index:
13
/
i10-index:
16
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
42

Petascale neural circuit reconstruction: automated methods

Thomas Macrina et al.Aug 5, 2021
Abstract 3D electron microscopy (EM) has been successful at mapping invertebrate nervous systems, but the approach has been limited to small chunks of mammalian brains. To scale up to larger volumes, we have built a computational pipeline for processing petascale image datasets acquired by serial section EM, a popular form of 3D EM. The pipeline employs convolutional nets to compute the nonsmooth transformations required to align images of serial sections containing numerous cracks and folds, detect neuronal boundaries, label voxels as axon, dendrite, soma, and other semantic categories, and detect synapses and assign them to presynaptic and postsynaptic segments. The output of neuronal boundary detection is segmented by mean affinity agglomeration with semantic and size constraints. Pipeline operations are implemented by leveraging distributed and cloud computing. Intermediate results of the pipeline are held in cloud storage, and can be effortlessly viewed as images, which aids debugging. We applied the pipeline to create an automated reconstruction of an EM image volume spanning four visual cortical areas of a mouse brain. Code for the pipeline is publicly available, as is the reconstructed volume.
1

Quantitative Census of Local Somatic Features in Mouse Visual Cortex

Leila Elabbady et al.Jul 22, 2022
Mammalian neocortex contains a highly diverse set of cell types. These types have been mapped systematically using a variety of molecular, electrophysiological and morphological approaches. Each modality offers new perspectives on the variation of biological processes underlying cell type specialization. Cellular scale electron microscopy (EM) provides dense ultrastructural examination and an unbiased perspective into the subcellular organization of brain cells, including their synaptic connectivity and nanometer scale morphology. It also presents a clear challenge for analysis to identify cell-types in data that contains tens of thousands of neurons, most of which have incomplete reconstructions. To address this challenge, we present the first systematic survey of the somatic region of all cells within a cubic millimeter of cortex using quantitative features obtained from EM. This analysis demonstrates a surprising sufficiency of the perisomatic region to identify cell-types, including types defined primarily based on their connectivity patterns. We then describe how this classification facilitates cell type specific connectivity characterization and locating cells with rare connectivity patterns in the dataset.
1
Citation15
0
Save
2

NEURD: automated proofreading and feature extraction for connectomics

Brendan Celii et al.Mar 15, 2023
We are now in the era of millimeter-scale electron microscopy (EM) volumes collected at nanometer resolution (Shapson-Coe et al., 2021; Consortium et al., 2021). Dense reconstruction of cellular compartments in these EM volumes has been enabled by recent advances in Machine Learning (ML) (Lee et al., 2017; Wu et al., 2021; Lu et al., 2021; Macrina et al., 2021). Automated segmentation methods can now yield exceptionally accurate reconstructions of cells, but despite this accuracy, laborious post-hoc proofreading is still required to generate large connectomes free of merge and split errors. The elaborate 3-D meshes of neurons produced by these segmentations contain detailed morphological information, from the diameter, shape, and branching patterns of axons and dendrites, down to the fine-scale structure of dendritic spines. However, extracting information about these features can require substantial effort to piece together existing tools into custom workflows. Building on existing open-source software for mesh manipulation, here we present "NEURD", a software package that decomposes each meshed neuron into a compact and extensively-annotated graph representation. With these feature-rich graphs, we implement workflows for state of the art automated post-hoc proofreading of merge errors, cell classification, spine detection, axon-dendritic proximities, and other features that can enable many downstream analyses of neural morphology and connectivity. NEURD can make these new massive and complex datasets more accessible to neuroscience researchers focused on a variety of scientific questions.
4

Petascale pipeline for precise alignment of images from serial section electron microscopy

Sergiy Popovych et al.Mar 27, 2022
Abstract The reconstruction of neural circuits from serial section electron microscopy (ssEM) images is being accelerated by automatic image segmentation methods. Segmentation accuracy is often limited by the preceding step of aligning 2D section images to create a 3D image stack. Precise and robust alignment in the presence of image artifacts is challenging, especially as datasets are attaining the petascale. We present a computational pipeline for aligning ssEM images with several key elements. Self-supervised convolutional nets are trained via metric learning to encode and align image pairs, and they are used to initialize iterative fine-tuning of alignment. A procedure called vector voting increases robustness to image artifacts or missing image data. For speedup the series is divided into blocks that are distributed to computational workers for alignment. The blocks are aligned to each other by composing transformations with decay, which achieves a global alignment without resorting to a time-consuming global optimization. We apply our pipeline to a whole fly brain dataset, and show improved accuracy relative to prior state of the art. We also demonstrate that our pipeline scales to a cubic millimeter of mouse visual cortex. Our pipeline is publicly available through two open source Python packages.
30

An unsupervised map of excitatory neurons’ dendritic morphology in the mouse visual cortex

Marissa Weis et al.Dec 22, 2022
Abstract Neurons in the neocortex exhibit astonishing morphological diversity which is critical for properly wiring neural circuits and giving neurons their functional properties. However, the organizational principles underlying this morphological diversity remain an open question. Here, we took a data-driven approach using graph-based machine learning methods to obtain a low-dimensional morphological “bar code” describing more than 30,000 excitatory neurons in mouse visual areas V1, AL and RL that were reconstructed from the millimeter scale MICrONS serial-section electron microscopy volume. Contrary to previous classifications into discrete morphological types (m-types), our data-driven approach suggests that the morphological landscape of cortical excitatory neurons is better described as a continuum, with a few notable exceptions in layers 5 and 6. Dendritic morphologies in layers 2–3 exhibited a trend towards a decreasing width of the dendritic arbor and a smaller tuft with increasing cortical depth. Inter-area differences were most evident in layer 4, where V1 contained more atufted neurons than higher visual areas. Moreover, we discovered neurons in V1 on the border to layer 5 which avoided deeper layers with their dendrites. In summary, we suggest that excitatory neurons’ morphological diversity is better understood by considering axes of variation than using distinct m-types.
30
Citation4
0
Save
18

The Synaptic Architecture of Layer 5 Thick Tufted Excitatory Neurons in the Visual Cortex of Mice

Ágnes Bodor et al.Jan 1, 2023
The neocortex is one of the most critical structures that makes us human, and it is involved in a variety of cognitive functions from perception to sensory integration and motor control. Composed of repeated modules, or microcircuits, the neocortex relies on distinct cell types as its fundamental building blocks. Despite significant progress in characterizing these cell types , an understanding of the complete synaptic partners associated with individual excitatory cell types remain elusive. Here, we investigate the connectivity of arguably the most well recognized and studied excitatory neuron in the neocortex: the large thick tufted layer 5 pyramidal cell also known as extra telencephalic cell (ET) . Although the synaptic interactions of ET neurons have been extensively explored, a comprehensive quantitative characterization of their local connectivity and their projections to other cortical areas remains lacking. To address this knowledge gap, we leveraged a 1 mm3 electron microscopic (EM) dataset encompassing primary and higher order visual areas. Our findings provide unexpected insights, as we observed that ETs formed the majority of their local synapses with inhibitory targets and the majority of their inter-areal synapses with excitatory targets. Locally, recurrent synapses with other ET neurons are sparse (~3%) and we identify previously undisclosed excitatory synaptic partners. We further reveal that ET neurons preferentially target specific inhibitory cell types in a feedback loop. These findings provide a novel view of the role of ET pyramidal cells in the cortex, highlighting their limited local recurrent connections while exerting widespread inhibition to regulate local ET networks as they transmit the information subcortically. Our results also highlight a circuit motif where a subclass of excitatory cells forms a sub-circuit with specific inhibitory cell types, providing a framework to investigate other excitatory cell types.
Load More