JW
Jingpeng Wu
Author with expertise in Neuronal Oscillations in Cortical Networks
Princeton University, Neuroscience Institute, Flatiron Health (United States)
+ 11 more
Achievements
Cited Author
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
25
(64% Open Access)
Cited by:
338
h-index:
25
/
i10-index:
34
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
3

FlyWire: online community for whole-brain connectomics

Sven Dorkenwald et al.Jul 9, 2023
+40
T
C
S
Due to advances in automated image acquisition and analysis, whole-brain connectomes with 100,000 or more neurons are on the horizon. Proofreading of whole-brain automated reconstructions will require many person-years of effort, due to the huge volumes of data involved. Here we present FlyWire, an online community for proofreading neural circuits in a Drosophila melanogaster brain and explain how its computational and social structures are organized to scale up to whole-brain connectomics. Browser-based three-dimensional interactive segmentation by collaborative editing of a spatially chunked supervoxel graph makes it possible to distribute proofreading to individuals located virtually anywhere in the world. Information in the edit history is programmatically accessible for a variety of uses such as estimating proofreading accuracy or building incentive systems. An open community accelerates proofreading by recruiting more participants and accelerates scientific discovery by requiring information sharing. We demonstrate how FlyWire enables circuit analysis by reconstructing and analyzing the connectome of mechanosensory neurons.
0

FlyWire: Online community for whole-brain connectomics

Sven Dorkenwald et al.May 26, 2024
+37
T
C
S
ABSTRACT Due to advances in automated image acquisition and analysis, new whole-brain connectomes beyond C. elegans are finally on the horizon. Proofreading of whole-brain automated reconstructions will require many person-years of effort, due to the huge volumes of data involved. Here we present FlyWire, an online community for proofreading neural circuits in a fly brain, and explain how its computational and social structures are organized to scale up to whole-brain connectomics. Browser-based 3D interactive segmentation by collaborative editing of a spatially chunked supervoxel graph makes it possible to distribute proofreading to individuals located virtually anywhere in the world. Information in the edit history is programmatically accessible for a variety of uses such as estimating proofreading accuracy or building incentive systems. An open community accelerates proofreading by recruiting more participants, and accelerates scientific discovery by requiring information sharing. We demonstrate how FlyWire enables circuit analysis by reconstructing and analysing the connectome of mechanosensory neurons.
0
Citation42
0
Save
222

Multiscale and multimodal reconstruction of cortical structure and function

Nicholas Turner et al.Oct 11, 2023
+42
J
T
N
Summary We present a semi-automated reconstruction of L2/3 mouse primary visual cortex from 3 million cubic microns of electron microscopic images, including pyramidal and inhibitory neurons, astrocytes, microglia, oligodendrocytes and precursors, pericytes, vasculature, mitochondria, and synapses. Visual responses of a subset of pyramidal cells are included. The data are being made publicly available, along with tools for programmatic and 3D interactive access. The density of synaptic inputs onto inhibitory neurons varies across cell classes and compartments. We uncover a compartment-specific correlation between mitochondrial coverage and synapse density. Frequencies of connectivity motifs in the graph of pyramidal cells are predicted quite accurately from node degrees using the configuration model of random graphs. Cells receiving more connections from nearby cells exhibit stronger and more reliable visual responses. These example findings illustrate the resource’s utility for relating structure and function of cortical circuits as well as for neuronal cell biology.
222
Citation41
0
Save
42

Petascale neural circuit reconstruction: automated methods

Thomas Macrina et al.Oct 13, 2023
+43
R
K
T
Abstract 3D electron microscopy (EM) has been successful at mapping invertebrate nervous systems, but the approach has been limited to small chunks of mammalian brains. To scale up to larger volumes, we have built a computational pipeline for processing petascale image datasets acquired by serial section EM, a popular form of 3D EM. The pipeline employs convolutional nets to compute the nonsmooth transformations required to align images of serial sections containing numerous cracks and folds, detect neuronal boundaries, label voxels as axon, dendrite, soma, and other semantic categories, and detect synapses and assign them to presynaptic and postsynaptic segments. The output of neuronal boundary detection is segmented by mean affinity agglomeration with semantic and size constraints. Pipeline operations are implemented by leveraging distributed and cloud computing. Intermediate results of the pipeline are held in cloud storage, and can be effortlessly viewed as images, which aids debugging. We applied the pipeline to create an automated reconstruction of an EM image volume spanning four visual cortical areas of a mouse brain. Code for the pipeline is publicly available, as is the reconstructed volume.
80

Predicting modular functions and neural coding of behavior from a synaptic wiring diagram

Ashwin Vishwanathan et al.Oct 24, 2023
+14
J
A
A
Abstract How much can connectomes with synaptic resolution help us understand brain function? An optimistic view is that a connectome is a major determinant of brain function and a key substrate for simulating a brain. Here we investigate the explanatory power of connectomics using a wiring diagram reconstructed from a larval zebrafish brainstem. We identify modules of strongly connected neurons that turn out to be specialized for different behavioral functions, the control of eye and body movements. We then build a neural network model using a synaptic weight matrix based on the reconstructed wiring diagram. This leads to predictions that statistically match the neural coding of eye position as observed by calcium imaging. Our work shows the promise of connectome-based brain modeling to yield experimentally testable predictions of neural activity and behavior, as well as mechanistic explanations of low-dimensional neural dynamics, a widely observed phenomenon in nervous systems.
80
Citation16
0
Save
1

Quantitative Census of Local Somatic Features in Mouse Visual Cortex

Leila Elabbady et al.Oct 24, 2023
+34
S
S
L
Mammalian neocortex contains a highly diverse set of cell types. These types have been mapped systematically using a variety of molecular, electrophysiological and morphological approaches. Each modality offers new perspectives on the variation of biological processes underlying cell type specialization. Cellular scale electron microscopy (EM) provides dense ultrastructural examination and an unbiased perspective into the subcellular organization of brain cells, including their synaptic connectivity and nanometer scale morphology. It also presents a clear challenge for analysis to identify cell-types in data that contains tens of thousands of neurons, most of which have incomplete reconstructions. To address this challenge, we present the first systematic survey of the somatic region of all cells within a cubic millimeter of cortex using quantitative features obtained from EM. This analysis demonstrates a surprising sufficiency of the perisomatic region to identify cell-types, including types defined primarily based on their connectivity patterns. We then describe how this classification facilitates cell type specific connectivity characterization and locating cells with rare connectivity patterns in the dataset.
1
Citation15
0
Save
228

Oligodendrocyte precursor cells prune axons in the mouse neocortex

JoAnn Buchanan et al.Oct 24, 2023
+39
F
L
J
ABSTRACT Neurons in the developing brain undergo extensive structural refinement as nascent circuits adopt their mature form 1 . This transformation is facilitated by the engulfment and degradation of excess axonal branches and inappropriate synapses by surrounding glial cells, including microglia and astrocytes 2,3 . However, the small size of phagocytic organelles and the complex, highly ramified morphology of glia has made it difficult to determine the contribution of these and other glial cell types to this process. Here, we used large scale, serial electron microscopy (ssEM) with computational volume segmentation to reconstruct the complete 3D morphologies of distinct glial types in the mouse visual cortex. Unexpectedly, we discovered that the fine processes of oligodendrocyte precursor cells (OPCs), a population of abundant, highly dynamic glial progenitors 4 , frequently surrounded terminal axon branches and included numerous phagolysosomes (PLs) containing fragments of axons and presynaptic terminals. Single- nucleus RNA sequencing indicated that cortical OPCs express key phagocytic genes, as well as neuronal transcripts, consistent with active axonal engulfment. PLs were ten times more abundant in OPCs than in microglia in P36 mice, and declined with age and lineage progression, suggesting that OPCs contribute very substantially to refinement of neuronal circuits during later phases of cortical development.
228
Citation14
0
Save
1

3D reconstruction of cell nuclei in a full Drosophila brain

Shang Mu et al.Oct 24, 2023
+22
N
S
S
Abstract We reconstructed all cell nuclei in a 3D image of a Drosophila brain acquired by serial section electron microscopy (EM). The total number of nuclei is approximately 133,000, at least 87% of which belong to neurons. Neuronal nuclei vary from several hundred down to roughly 5 cubic micrometers. Glial nuclei can be even smaller. The optic lobes contain more than two times the number of cells than the central brain. Our nuclear reconstruction serves as a spatial map and index to the cells in a Drosophila brain.
0

Synaptic architecture of leg and wing premotor control networks in Drosophila

Ellen Lesser et al.Aug 23, 2024
+30
J
A
E
0
Citation7
0
Save
0

The Neural Basis for a Persistent Internal State inDrosophilaFemales

David Deutsch et al.May 7, 2020
+19
L
D
D
Abstract Sustained changes in mood or action require persistent changes in neural activity, but it has been difficult to identify and characterize the neural circuit mechanisms that underlie persistent activity and contribute to long-lasting changes in behavior. Here, we focus on changes in the behavioral state of Drosophila females that persist for minutes following optogenetic activation of a single class of central brain neurons termed pC1. We find that female pC1 neurons drive a variety of persistent behaviors in the presence of males, including increased receptivity, shoving, and chasing. By reconstructing cells in a volume electron microscopic image of the female brain, we classify 7 different pC1 cell types and, using cell type specific driver lines, determine that one of these, pC1-Alpha, is responsible for driving persistent female shoving and chasing. Using calcium imaging, we locate sites of minutes-long persistent neural activity in the brain, which include pC1 neurons themselves. Finally, we exhaustively reconstruct all synaptic partners of a single pC1-Alpha neuron, and find recurrent connectivity that could support the persistent neural activity. Our work thus links minutes-long persistent changes in behavior with persistent neural activity and recurrent circuit architecture in the female brain.
0
Citation6
0
Save
Load More