TM
Taliah Muhammad
Author with expertise in Neuronal Oscillations in Cortical Networks
Achievements
Open Access Advocate
Cited Author
Key Stats
Upvotes received:
0
Publications:
13
(85% Open Access)
Cited by:
43
h-index:
10
/
i10-index:
11
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
40

Generalization in data-driven models of primary visual cortex

Konstantin-Klemens Lurz et al.Oct 7, 2020
A bstract Deep neural networks (DNN) have set new standards at predicting responses of neural populations to visual input. Most such DNNs consist of a convolutional network (core) shared across all neurons which learns a representation of neural computation in visual cortex and a neuron-specific readout that linearly combines the relevant features in this representation. The goal of this paper is to test whether such a representation is indeed generally characteristic for visual cortex, i.e. gener-alizes between animals of a species, and what factors contribute to obtaining such a generalizing core. To push all non-linear computations into the core where the generalizing cortical features should be learned, we devise a novel readout that reduces the number of parameters per neuron in the readout by up to two orders of magnitude compared to the previous state-of-the-art. It does so by taking advantage of retinotopy and learns a Gaussian distribution over the neuron’s receptive field po-sition. With this new readout we train our network on neural responses from mouse primary visual cortex (V1) and obtain a gain in performance of 7% compared to the previous state-of-the-art network. We then investigate whether the convolutional core indeed captures general cortical features by using the core in transfer learning to a different animal. When transferring a core trained on thousands of neurons from various animals and scans we exceed the performance of training directly on that animal by 12%, and outperform a commonly used VGG16 core pre-trained on imagenet by 33%. In addition, transfer learning with our data-driven core is more data-efficient than direct training, achieving the same performance with only 40% of the data. Our model with its novel readout thus sets a new state-of-the-art for neural response prediction in mouse visual cortex from natural images, generalizes between animals, and captures better characteristic cortical features than current task-driven pre-training approaches such as VGG16.
98

Bipartite invariance in mouse primary visual cortex

Zhiwei Ding et al.Mar 16, 2023
A defining characteristic of intelligent systems, whether natural or artificial, is the ability to generalize and infer behaviorally relevant latent causes from high-dimensional sensory input, despite significant variations in the environment. To understand how brains achieve generalization, it is crucial to identify the features to which neurons respond selectively and invariantly. However, the high-dimensional nature of visual inputs, the non-linearity of information processing in the brain, and limited experimental time make it challenging to systematically characterize neuronal tuning and invariances, especially for natural stimuli. Here, we extended "inception loops" - a paradigm that iterates between large-scale recordings, neural predictive models, and in silico experiments followed by in vivo verification - to systematically characterize single neuron invariances in the mouse primary visual cortex. Using the predictive model we synthesized Diverse Exciting Inputs (DEIs), a set of inputs that differ substantially from each other while each driving a target neuron strongly, and verified these DEIs' efficacy in vivo. We discovered a novel bipartite invariance: one portion of the receptive field encoded phase-invariant texture-like patterns, while the other portion encoded a fixed spatial pattern. Our analysis revealed that the division between the fixed and invariant portions of the receptive fields aligns with object boundaries defined by spatial frequency differences present in highly activating natural images. These findings suggest that bipartite invariance might play a role in segmentation by detecting texture-defined object boundaries, independent of the phase of the texture. We also replicated these bipartite DEIs in the functional connectomics MICrONs data set, which opens the way towards a circuit-level mechanistic understanding of this novel type of invariance. Our study demonstrates the power of using a data-driven deep learning approach to systematically characterize neuronal invariances. By applying this method across the visual hierarchy, cell types, and sensory modalities, we can decipher how latent variables are robustly extracted from natural scenes, leading to a deeper understanding of generalization.
1

Digital twin reveals combinatorial code of non-linear computations in the mouse primary visual cortex

Ivan Ustyuzhaninov et al.Feb 10, 2022
More than a dozen excitatory cell types have been identified in the mouse primary visual cortex (V1) based on transcriptomic, morphological and in vitro electrophysiological features. However, the functional landscape of excitatory neurons with respect to their responses to visual stimuli is currently unknown. Here, we combined large-scale two-photon imaging and deep learning neural predictive models to study the functional organization of mouse V1 using digital twins. Digital twins enable exhaustive in silico functional characterization providing a bar code summarizing the input-output function of each neuron. Clustering the bar codes revealed a continuum of function with around 30 modes. Each mode represented a group of neurons that exhibited a specific combination of stimulus selectivity and nonlinear response properties such as cross-orientation inhibition, size-contrast tuning and surround suppression. These non-linear properties were expressed independently spanning all possible combinations across the population. This combinatorial code provides the first large-scale, data-driven characterization of the functional organization of V1. This powerful approach based on digital twins is applicable to other brain areas and to complex non-linear systems beyond the brain.
2

A flow-based latent state generative model of neural population responses to natural images

Mohammad Bashiri et al.Sep 10, 2021
Abstract We present a joint deep neural system identification model for two major sources of neural variability: stimulus-driven and stimulus-conditioned fluctuations. To this end, we combine (1) state-of-the-art deep networks for stimulus-driven activity and (2) a flexible, normalizing flow-based generative model to capture the stimulus-conditioned variability including noise correlations. This allows us to train the model end-to-end without the need for sophisticated probabilistic approximations associated with many latent state models for stimulus-conditioned fluctuations. We train the model on the responses of thousands of neurons from multiple areas of the mouse visual cortex to natural images. We show that our model outperforms previous state-of-the-art models in predicting the distribution of neural population responses to novel stimuli, including shared stimulus-conditioned variability. Furthermore, it successfully learns known latent factors of the population responses that are related to behavioral variables such as pupil dilation, and other factors that vary systematically with brain area or retinotopic location. Overall, our model accurately accounts for two critical sources of neural variability while avoiding several complexities associated with many existing latent state models. It thus provides a useful tool for uncovering the interplay between different factors that contribute to variability in neural activity.
1

Functional connectomics reveals general wiring rule in mouse visual cortex

Zhuokun Ding et al.Mar 14, 2023
To understand how the brain computes, it is important to unravel the relationship between circuit connectivity and function. Previous research has shown that excitatory neurons in layer 2/3 of the primary visual cortex of mice with similar response properties are more likely to form connections. However, technical challenges of combining synaptic connectivity and functional measurements have limited these studies to few, highly local connections. Utilizing the millimeter scale and nanometer resolution of the MICrONS dataset, we studied the connectivity-function relationship in excitatory neurons of the mouse visual cortex across interlaminar and interarea projections, assessing connection selectivity at the coarse axon trajectory and fine synaptic formation levels. A digital twin model of this mouse, that accurately predicted responses to arbitrary video stimuli, enabled a comprehensive characterization of the function of neurons. We found that neurons with highly correlated responses to natural videos tended to be connected with each other, not only within the same cortical area but also across multiple layers and visual areas, including feedforward and feedback connections, whereas we did not find that orientation preference predicted connectivity. The digital twin model separated each neuron's tuning into a feature component (what the neuron responds to) and a spatial component (where the neuron's receptive field is located). We show that the feature, but not the spatial component, predicted which neurons were connected at the fine synaptic scale. Together, our results demonstrate the "like-to-like" connectivity rule generalizes to multiple connection types, and the rich MICrONS dataset is suitable to further refine a mechanistic understanding of circuit structure and function.
46

Functional connectomics spanning multiple areas of mouse visual cortex

Jinsoo Bae et al.Jul 29, 2021
Abstract To understand the brain we must relate neurons’ functional responses to the circuit architecture that shapes them. Here, we present a large functional connectomics dataset with dense calcium imaging of a millimeter scale volume. We recorded activity from approximately 75,000 neurons in primary visual cortex (VISp) and three higher visual areas (VISrl, VISal and VISlm) in an awake mouse viewing natural movies and synthetic stimuli. The functional data were co-registered with a volumetric electron microscopy (EM) reconstruction containing more than 200,000 cells and 0.5 billion synapses. Subsequent proofreading of a subset of neurons in this volume yielded reconstructions that include complete dendritic trees as well the local and inter-areal axonal projections that map up to thousands of cell-to-cell connections per neuron. Here, we release this dataset as an open-access resource to the scientific community including a set of tools that facilitate data retrieval and downstream analysis. In accompanying papers we describe our findings using the dataset to provide a comprehensive structural characterization of cortical cell types 1–3 and the most detailed synaptic level connectivity diagram of a cortical column to date 2 , uncovering unique cell-type specific inhibitory motifs that can be linked to gene expression data 4 . Functionally, we identify new computational principles of how information is integrated across visual space 5 , characterize novel types of neuronal invariances 6 and bring structure and function together to decipher a general principle that wires excitatory neurons within and across areas 7, 8 .
0

A global map of orientation tuning in mouse visual cortex

Paul Fahey et al.Aug 23, 2019
In primates and most carnivores, neurons in primary visual cortex are spatially organized by their functional properties. For example, neurons with similar orientation preferences are grouped together in iso-orientation domains that smoothly vary over the cortical sheet. In rodents, on the other hand, neurons with different orientation preferences are thought to be spatially intermingled, a feature which has been termed "salt-and-pepper" organization. The apparent absence of any systematic structure in orientation tuning has been considered a defining feature of the rodent visual system for more than a decade, with broad implications for brain development, visual processing, and comparative neurophysiology. Here, we revisited this question using new techniques for wide-field two-photon calcium imaging that enabled us to collect nearly complete population tuning preferences in layers 2-4 across a large fraction of the mouse visual hierarchy. Examining the orientation tuning of these hundreds of thousands of neurons, we found a global map spanning multiple visual cortical areas in which orientation bias was organized around a single pinwheel centered in V1. This pattern was consistent across animals and cortical depth. The existence of this global organization in rodents has implications for our understanding of visual processing and the principles governing the ontogeny and phylogeny of the visual cortex of mammals.
Load More