SY
Szi-chieh Yu
Author with expertise in Neuroscience and Genetics of Drosophila Melanogaster
Achievements
Cited Author
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
23
(70% Open Access)
Cited by:
356
h-index:
17
/
i10-index:
22
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Binary and analog variation of synapses between cortical pyramidal neurons

Sven Dorkenwald et al.Dec 31, 2019
Abstract Learning from experience depends at least in part on changes in neuronal connections. We present the largest map of connectivity to date between cortical neurons of a defined type (L2/3 pyramidal cells), which was enabled by automated analysis of serial section electron microscopy images with improved handling of image defects. We used the map to identify constraints on the learning algorithms employed by the cortex. Previous cortical studies modeled a continuum of synapse sizes (Arellano et al. 2007) by a log-normal distribution (Loewenstein, Kuras, and Rumpel 2011; de Vivo et al. 2017; Santuy et al. 2018). A continuum is consistent with most neural network models of learning, in which synaptic strength is a continuously graded analog variable. Here we show that synapse size, when restricted to synapses between L2/3 pyramidal cells, is well-modeled by the sum of a binary variable and an analog variable drawn from a log-normal distribution. Two synapses sharing the same presynaptic and postsynaptic cells are known to be correlated in size (Sorra and Harris 1993; Koester and Johnston 2005; Bartol et al. 2015; Kasthuri et al. 2015; Dvorkin and Ziv 2016; Bloss et al. 2018; Motta et al. 2019). We show that the binary variables of the two synapses are highly correlated, while the analog variables are not. Binary variation could be the outcome of a Hebbian or other synaptic plasticity rule depending on activity signals that are relatively uniform across neuronal arbors, while analog variation may be dominated by other influences. We discuss the implications for the stability-plasticity dilemma.
42

Petascale neural circuit reconstruction: automated methods

Thomas Macrina et al.Aug 5, 2021
Abstract 3D electron microscopy (EM) has been successful at mapping invertebrate nervous systems, but the approach has been limited to small chunks of mammalian brains. To scale up to larger volumes, we have built a computational pipeline for processing petascale image datasets acquired by serial section EM, a popular form of 3D EM. The pipeline employs convolutional nets to compute the nonsmooth transformations required to align images of serial sections containing numerous cracks and folds, detect neuronal boundaries, label voxels as axon, dendrite, soma, and other semantic categories, and detect synapses and assign them to presynaptic and postsynaptic segments. The output of neuronal boundary detection is segmented by mean affinity agglomeration with semantic and size constraints. Pipeline operations are implemented by leveraging distributed and cloud computing. Intermediate results of the pipeline are held in cloud storage, and can be effortlessly viewed as images, which aids debugging. We applied the pipeline to create an automated reconstruction of an EM image volume spanning four visual cortical areas of a mouse brain. Code for the pipeline is publicly available, as is the reconstructed volume.
1

Quantitative Census of Local Somatic Features in Mouse Visual Cortex

Leila Elabbady et al.Jul 22, 2022
Mammalian neocortex contains a highly diverse set of cell types. These types have been mapped systematically using a variety of molecular, electrophysiological and morphological approaches. Each modality offers new perspectives on the variation of biological processes underlying cell type specialization. Cellular scale electron microscopy (EM) provides dense ultrastructural examination and an unbiased perspective into the subcellular organization of brain cells, including their synaptic connectivity and nanometer scale morphology. It also presents a clear challenge for analysis to identify cell-types in data that contains tens of thousands of neurons, most of which have incomplete reconstructions. To address this challenge, we present the first systematic survey of the somatic region of all cells within a cubic millimeter of cortex using quantitative features obtained from EM. This analysis demonstrates a surprising sufficiency of the perisomatic region to identify cell-types, including types defined primarily based on their connectivity patterns. We then describe how this classification facilitates cell type specific connectivity characterization and locating cells with rare connectivity patterns in the dataset.
1
Citation15
0
Save
2

NEURD: automated proofreading and feature extraction for connectomics

Brendan Celii et al.Mar 15, 2023
We are now in the era of millimeter-scale electron microscopy (EM) volumes collected at nanometer resolution (Shapson-Coe et al., 2021; Consortium et al., 2021). Dense reconstruction of cellular compartments in these EM volumes has been enabled by recent advances in Machine Learning (ML) (Lee et al., 2017; Wu et al., 2021; Lu et al., 2021; Macrina et al., 2021). Automated segmentation methods can now yield exceptionally accurate reconstructions of cells, but despite this accuracy, laborious post-hoc proofreading is still required to generate large connectomes free of merge and split errors. The elaborate 3-D meshes of neurons produced by these segmentations contain detailed morphological information, from the diameter, shape, and branching patterns of axons and dendrites, down to the fine-scale structure of dendritic spines. However, extracting information about these features can require substantial effort to piece together existing tools into custom workflows. Building on existing open-source software for mesh manipulation, here we present "NEURD", a software package that decomposes each meshed neuron into a compact and extensively-annotated graph representation. With these feature-rich graphs, we implement workflows for state of the art automated post-hoc proofreading of merge errors, cell classification, spine detection, axon-dendritic proximities, and other features that can enable many downstream analyses of neural morphology and connectivity. NEURD can make these new massive and complex datasets more accessible to neuroscience researchers focused on a variety of scientific questions.
30

An unsupervised map of excitatory neurons’ dendritic morphology in the mouse visual cortex

Marissa Weis et al.Dec 22, 2022
Abstract Neurons in the neocortex exhibit astonishing morphological diversity which is critical for properly wiring neural circuits and giving neurons their functional properties. However, the organizational principles underlying this morphological diversity remain an open question. Here, we took a data-driven approach using graph-based machine learning methods to obtain a low-dimensional morphological “bar code” describing more than 30,000 excitatory neurons in mouse visual areas V1, AL and RL that were reconstructed from the millimeter scale MICrONS serial-section electron microscopy volume. Contrary to previous classifications into discrete morphological types (m-types), our data-driven approach suggests that the morphological landscape of cortical excitatory neurons is better described as a continuum, with a few notable exceptions in layers 5 and 6. Dendritic morphologies in layers 2–3 exhibited a trend towards a decreasing width of the dendritic arbor and a smaller tuft with increasing cortical depth. Inter-area differences were most evident in layer 4, where V1 contained more atufted neurons than higher visual areas. Moreover, we discovered neurons in V1 on the border to layer 5 which avoided deeper layers with their dendrites. In summary, we suggest that excitatory neurons’ morphological diversity is better understood by considering axes of variation than using distinct m-types.
30
Citation4
0
Save
0

Comparative connectomics of the descending and ascending neurons of theDrosophilanervous system: stereotypy and sexual dimorphism

Tomke Stürner et al.Jun 6, 2024
Abstract In most complex nervous systems there is a clear anatomical separation between the nerve cord, which contains most of the final motor outputs necessary for behaviour, and the brain. In insects, the neck connective is both a physical and information bottleneck connecting the brain and the ventral nerve cord (VNC, spinal cord analogue) and comprises diverse populations of descending (DN), ascending (AN) and sensory ascending neurons, which are crucial for sensorimotor signalling and control. Integrating three separate EM datasets, we now provide a complete connectomic description of the ascending and descending neurons of the female nervous system of Drosophila and compare them with neurons of the male nerve cord. Proofread neuronal reconstructions have been matched across hemispheres, datasets and sexes. Crucially, we have also matched 51% of DN cell types to light level data defining specific driver lines as well as classifying all ascending populations. We use these results to reveal the general architecture, tracts, neuropil innervation and connectivity of neck connective neurons. We observe connected chains of descending and ascending neurons spanning the neck, which may subserve motor sequences. We provide a complete description of sexually dimorphic DN and AN populations, with detailed analysis of circuits implicated in sex-related behaviours, including female ovipositor extrusion (DNp13), male courtship (DNa12/aSP22) and song production (AN hemilineage 08B). Our work represents the first EM-level circuit analyses spanning the entire central nervous system of an adult animal.
Load More