VR
Victoria Ruiz‐Serra
Author with expertise in Protein Structure Prediction and Analysis
Achievements
Open Access Advocate
Cited Author
Key Stats
Upvotes received:
0
Publications:
6
(100% Open Access)
Cited by:
380
h-index:
6
/
i10-index:
5
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
1

A structural biology community assessment of AlphaFold2 applications

Mehmet Akdel et al.Nov 1, 2022
Most proteins fold into 3D structures that determine how they function and orchestrate the biological processes of the cell. Recent developments in computational methods for protein structure predictions have reached the accuracy of experimentally determined models. Although this has been independently verified, the implementation of these methods across structural-biology applications remains to be tested. Here, we evaluate the use of AlphaFold2 (AF2) predictions in the study of characteristic structural elements; the impact of missense variants; function and ligand binding site predictions; modeling of interactions; and modeling of experimental structural data. For 11 proteomes, an average of 25% additional residues can be confidently modeled when compared with homology modeling, identifying structural features rarely seen in the Protein Data Bank. AF2-based predictions of protein disorder and complexes surpass dedicated tools, and AF2 models can be used across diverse applications equally well compared with experimentally determined structures, when the confidence metrics are critically considered. In summary, we find that these advances are likely to have a transformative impact in structural biology and broader life-science research.
1
Citation370
0
Save
99

The structural coverage of the human proteome before and after AlphaFold

Eduard Porta-Pardo et al.Aug 3, 2021
Abstract The protein structure field is experiencing a revolution. From the increased throughput of techniques to determine experimental structures, to developments such as cryo-EM that allow us to find the structures of large protein complexes or, more recently, the development of artificial intelligence tools, such as AlphaFold, that can predict with high accuracy the folding of proteins for which the availability of homology templates is limited. Here we quantify the effect of the recently released AlphaFold database of protein structural models in our knowledge on human proteins. Our results indicate that our current baseline for structural coverage of 48%, considering experimentally-derived or template-based homology models, elevates up to 76% when including AlphaFold predictions. At the same time the fraction of dark proteome is reduced from 26% to just 10% when AlphaFold models are considered. Furthermore, although the coverage of disease-associated genes and mutations was near complete before AlphaFold release (69% of Clinvar pathogenic mutations and 88% of oncogenic mutations), AlphaFold models still provide an additional coverage of 3% to 13% of these critically important sets of biomedical genes and mutations. Finally, we show how the contribution of AlphaFold models to the structural coverage of non-human organisms, including important pathogenic bacteria, is significantly larger than that of the human proteome. Overall, our results show that the sequence-structure gap of human proteins has almost disappeared, an outstanding success of direct consequences for the knowledge on the human genome and the derived medical applications.
99
Citation6
0
Save
317

A structural biology community assessment of AlphaFold 2 applications

Mehmet Akdel et al.Sep 26, 2021
Abstract Most proteins fold into 3D structures that determine how they function and orchestrate the biological processes of the cell. Recent developments in computational methods have led to protein structure predictions that have reached the accuracy of experimentally determined models. While this has been independently verified, the implementation of these methods across structural biology applications remains to be tested. Here, we evaluate the use of AlphaFold 2 (AF2) predictions in the study of characteristic structural elements; the impact of missense variants; function and ligand binding site predictions; modelling of interactions; and modelling of experimental structural data. For 11 proteomes, an average of 25% additional residues can be confidently modelled when compared to homology modelling, identifying structural features rarely seen in the PDB. AF2-based predictions of protein disorder and protein complexes surpass state-of-the-art tools and AF2 models can be used across diverse applications equally well compared to experimentally determined structures, when the confidence metrics are critically considered. In summary, we find that these advances are likely to have a transformative impact in structural biology and broader life science research.
10

Unraveling the molecular basis of host cell receptor usage in SARS-CoV-2 and other human pathogenic β-CoVs

Camila Pontes et al.Aug 21, 2020
Abstract The recent emergence of the novel SARS-CoV-2 in China and its rapid spread in the human population has led to a public health crisis worldwide. Like in SARS-CoV, horseshoe bats currently represent the most likely candidate animal source for SARS-CoV-2. Yet, the specific mechanisms of cross-species transmission and adaptation to the human host remain unknown. Here we show that the unsupervised analysis of conservation patterns across the β-CoV spike protein family, using sequence information alone, can provide rich information on the molecular basis of the specificity of β-CoVs to different host cell receptors. More precisely, our results indicate that host cell receptor usage is encoded in the amino acid sequences of different CoV spike proteins in the form of a set of specificity determining positions (SDPs). Furthermore, by integrating structural data, in silico mutagenesis and coevolution analysis we could elucidate the role of SDPs in mediating ACE2 binding across the Sarbecovirus lineage, either by engaging the receptor through direct intermolecular interactions or by affecting the local environment of the receptor binding motif. Finally, by the analysis of coevolving mutations across a paired MSA we were able to identify key intermolecular contacts occurring at the spike-ACE2 interface. These results show that effective mining of the evolutionary records held in the sequence of the spike protein family can help tracing the molecular mechanisms behind the evolution and host-receptors adaptation of circulating and future novel β-CoVs. Significance Unraveling the molecular basis for host cell receptor usage among β-CoVs is crucial to our understanding of cross-species transmission, adaptation and for molecular-guided epidemiological monitoring of potential outbreaks. In the present study, we survey the sequence conservation patterns of the β-CoV spike protein family to identify the evolutionary constraints shaping the functional specificity of the protein across the β-CoV lineage. We show that the unsupervised analysis of statistical patterns in a MSA of the spike protein family can help tracing the amino acid space encoding the specificity of β-CoVs to their cognate host cell receptors. We argue that the results obtained in this work can provide a framework for monitoring the evolution of SARS-CoV-2 specificity to the hACE2 receptor, as the virus continues spreading in the human population and differential virulence starts to arise.