EE
Erin Ehmke
Author with expertise in Epigenetic Modifications and Their Functional Implications
Achievements
Open Access Advocate
Cited Author
Key Stats
Upvotes received:
0
Publications:
3
(67% Open Access)
Cited by:
14
h-index:
11
/
i10-index:
12
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
4

Pan-primate DNA methylation clocks

Steve Horvath et al.Nov 30, 2020
+16
A
J
S
ABSTRACT DNA methylation data have been successfully used to develop highly accurate estimators of age (“epigenetic clocks”) in many mammalian species. With a view of extending such epigenetic clocks to all primate species, we analyzed DNA methylation profiles of 2400 tissues derived from 37 primate species including 11 haplorhine species (baboons, marmosets, vervets, rhesus macaque, chimpanzees, gorillas, orangutan, humans) and 26 strepsirrhine species (suborders Lemuriformes and Lorisiformes). From these we present here, pan-primate epigenetic clocks which are highly accurate for all primates including humans (age correlation R=0.98). We also carried out in-depth analysis of baboon DNA methylation profiles and generated five epigenetic clocks for baboons (Olive-yellow baboon hybrid), one of which, the pan-tissue epigenetic clock, was trained on seven tissue types (fetal cerebral cortex, adult cerebral cortex, cerebellum, adipose, heart, liver, and skeletal muscle) with ages ranging from late fetal life to 22.8 years of age. To facilitate translation of findings in baboons to humans, we further constructed two dual-species, human-baboon clocks. We also identified and present here, epigenetic predictors of sex that apply to all primate species. Low overlap can be observed between age- and sex-related CpGs. Overall, this study advances our understanding of conserved age- and sex-related epigenetic changes in primates, and provides biomarkers to study the aging of all primate species with the facility to readily translate any findings between primate species.
4
Citation14
0
Save
0

A digital collection of rare and endangered lemurs and other primates from the Duke Lemur Center

Gabriel Yapuncich et al.Jul 1, 2019
+4
D
A
G
Scientific study of lemurs, a group of primates found only on Madagascar, is crucial for understanding primate evolution. Unfortunately, lemurs are among the most endangered animals in the world, so there is a strong impetus to maximize as much scientific data as possible from available physical specimens. MicroCT scanning efforts at Duke University have resulted in scans of more than 100 strepsirrhine cadavers representing 18 species from the Duke Lemur Center. Scans include specimen overviews and focused, high-resolution selections of complex anatomical regions (e.g., cranium, hands, feet). Scans have been uploaded to MorphoSource, an online digital repository for 3D data. As captive (but free ranging) individuals, these specimens have a wealth of associated information that is largely unavailable for wild populations, including detailed life history data. This digital collection maximizes the information obtained from rare and endangered animals without degradation of the original specimens.
199

Universal DNA methylation age across mammalian tissues

A.T. Lu et al.Jan 19, 2021
+190
D
J
A
ABSTRACT Aging is often perceived as a degenerative process resulting from random accrual of cellular damage over time. Despite this, age can be accurately estimated by epigenetic clocks based on DNA methylation profiles from almost any tissue of the body. Since such pan-tissue epigenetic clocks have been successfully developed for several different species, we hypothesized that one can build pan-mammalian clocks that measure age in all mammalian species. To address this, we generated data using 11,754 methylation arrays, each profiling up to 36 thousand cytosines in highly-conserved stretches of DNA, from 59 tissue-types derived from 185 mammalian species. From these methylation profiles, we constructed three age predictors, each with a single mathematical formula, termed universal pan-mammalian clocks that are accurate in estimating the age (r>0.96) of any mammalian tissue. Deviations between epigenetic age and chronological age relate to mortality risk in humans, mutations that affect the somatotropic axis in mice, and caloric restriction. We characterized specific cytosines, whose methylation levels change with age across most mammalian species. These cytosines are greatly enriched in polycomb repressive complex 2-binding sites, are located in regions that gradually lose chromatin accessibility with age and are proximal to genes that play a role in mammalian development, cancer, human obesity, and human longevity. Collectively, these results support the notion that aging is indeed evolutionarily conserved and coupled to developmental processes across all mammalian species - a notion that was long-debated without the benefit of this new compelling evidence. SUMMARY This study identifies and characterizes evolutionarily conserved cytosines implicated in the aging process across mammals and establishes pan mammalian epigenetic clocks.