HK
Hippokratis Kiaris
Author with expertise in Epigenetic Modifications and Their Functional Implications
Achievements
Open Access Advocate
Cited Author
Key Stats
Upvotes received:
0
Publications:
9
(89% Open Access)
Cited by:
45
h-index:
42
/
i10-index:
97
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
150

Epigenetic predictors of maximum lifespan and other life history traits in mammals

Caesar Li et al.May 18, 2021
+133
P
K
C
Maximum lifespan of a species is the oldest that individuals can survive, reflecting the genetic limit of longevity in an ideal environment. Here we report methylation-based models that accurately predict maximum lifespan (r=0.89), gestational time (r=0.96), and age at sexual maturity (r=0.87), using cytosine methylation patterns collected from over 12,000 samples derived from 192 mammalian species. Our epigenetic maximum lifespan predictor corroborated the extended lifespan in growth hormone receptor knockout mice and rapamycin treated mice. Across dog breeds, epigenetic maximum lifespan correlates positively with breed lifespan but negatively with breed size. Lifespan-related cytosines are located in transcriptional regulatory regions, such as bivalent chromatin promoters and polycomb-repressed regions, which were hypomethylated in long-lived species. The epigenetic estimators of maximum lifespan and other life history traits will be useful for characterizing understudied species and for identifying interventions that extend lifespan.
150
Citation16
0
Save
37

DNA Methylation Networks Underlying Mammalian Traits

Amin Haghani et al.Mar 16, 2021
+41
C
A
A
Summary Epigenetics has hitherto been studied and understood largely at the level of individual organisms. Here, we report a multi-faceted investigation of DNA methylation across 11,117 samples from 176 different species. We performed an unbiased clustering of individual cytosines into 55 modules and identified 31 modules related to primary traits including age, species lifespan, sex, adult species weight, tissue type and phylogenetic order. Analysis of the correlation between DNA methylation and species allowed us to construct phyloepigenetic trees for different tissues that parallel the phylogenetic tree. In addition, while some stable cytosines reflect phylogenetic signatures, others relate to age and lifespan, and in many cases responding to anti-aging interventions in mice such as caloric restriction and ablation of growth hormone receptors. Insights uncovered by this investigation have important implications for our understanding of the role of epigenetics in mammalian evolution, aging and lifespan.
37
Citation15
0
Save
1

SARS-CoV-2 infects multiple species of North American deer mice and causes clinical disease in the California mouse

Juliette Lewis et al.Aug 23, 2022
+3
A
A
J
ABSTRACT Severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2), the virus that causes coronavirus disease-19 (COVID-19), emerged in late 2019 in Wuhan, China and its rapid global spread has resulted in millions of deaths. An important public health consideration is the potential for SARS-CoV-2 to establish endemicity in a secondary animal reservoir outside of Asia or acquire adaptations that result in new variants with the ability to evade the immune response and reinfect the human population. Previous work has shown that North American deer mice ( Peromyscus maniculatus ) are susceptible and can transmit SARS-CoV-2 to naïve conspecifics, indicating its potential to serve as a wildlife reservoir for SARS-CoV-2 in North America. In this study, we report experimental SARS-CoV-2 susceptibility of two additional subspecies of the North American deer mouse and two additional deer mouse species, with infectious virus and viral RNA present in oral swabs and lung tissue of infected deer mice and neutralizing antibodies present at 15 days post-challenge. Moreover, some of one species, the California mouse ( P. californicus ) developed clinical disease, including one that required humane euthanasia. California mice often develop spontaneous liver disease, which may serve as a comorbidity for SARS-CoV-2 severity. The results of this study suggest broad susceptibility of rodents in the genus Peromyscus and further emphasize the potential of SARS-CoV-2 to infect a wide array of North American rodents. Importance A significant concern is the spillback of SARS-CoV-2 into North American wildlife species. We have determined that several species of peromyscine rodents, the most abundant mammals in North America, are susceptible to SARS-CoV-2 and that infection is likely long enough that the virus may be able to establish persistence in local rodent populations. Strikingly, some California mice developed clinical disease that suggests this species may be useful for the study of human co-morbidities often associated with severe and fatal COVID-19 disease.
1
Paper
Citation4
0
Save
26

The Spike protein of SARS-CoV-2 impairs lipid metabolism and increases susceptibility to lipotoxicity: implication for a role of Nrf2

Vi Nguyen et al.Apr 19, 2022
+6
C
Y
V
Abstract Background/objectives Coronavirus disease 2019 (COVID-19) patients exhibit lipid metabolic alterations, but the mechanism remains unknown. In this study, we aimed to investigate whether the Spike protein of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) impairs lipid metabolism in host cells. Methods A Spike cell line in HEK293 was generated using the pcDNA vector carrying the Spike gene expression cassette. A control cell line was generated using the empty pcDNA vector. Gene expression profiles related to lipid metabolic, autophagic, and ferroptotic pathways were investigated. Palmitic acid (PA)-overload was used to assess lipotoxicity-induced necrosis. Results As compared with controls, the Spike cells showed a significant increase in lipid depositions on cell membranes as well as dysregulation of expression of a panel of molecules involved lipid metabolism, autophagy, and ferroptosis. The Spike cells showed an upregulation of nuclear factor erythroid 2-related factor 2 (Nrf2), a multifunctional transcriptional factor, in response to PA. Furthermore, the Spike cells exhibited increased necrosis in response to PA-induced lipotoxicity compared to control cells in a time- and dose-dependent manner via ferroptosis, which could be attenuated by the Nrf2 inhibitor trigonelline. Conclusions The Spike protein impairs lipid metabolic and autophagic pathways in host cells, leading to increased susceptibility to lipotoxicity via ferroptosis which can be suppressed by a Nrf2 inhibitor. This data also suggests a central role of Nrf2 in Spike-induced lipid metabolic impairments. Highlights The Spike protein increases lipid deposition in host cell membranes The Spike protein impairs lipid metabolic and autophagic pathways The Spike protein exaggerates PA-induced lipotoxicity in host cells via ferroptosis Nrf2 inhibitor Trigonelline can mitigate the Spike protein-induced necrosis
26
Citation4
0
Save
1

Methylation studies in Peromyscus: aging, altitude adaptation, and monogamy

Steve Horvath et al.Mar 16, 2021
+6
J
A
S
ABSTRACT DNA methylation-based biomarkers of aging have been developed for humans and many other mammals and could be used to assess how stress factors impact aging. Deer mice (Peromyscus) are long living rodents that have emerged as an informative model to study aging, adaptation at extreme environments, and monogamous behavior. In the present study we have undertaken an exhaustive, genome-wide analysis of DNA methylation in Peromyscus, spanning different species, stocks, sexes, tissues and age cohorts. We describe DNA methylation-based estimators of age for different species of deer mice based on novel DNA methylation data generated on highly conserved mammalian CpGs measured with a custom array. The multi-tissue epigenetic clock for deer mice was trained on 3 tissue sources (tail, liver, brain). Two dual species human-peromyscus clocks accurately measure age and relative age defined as the ratio of chronological age to maximum age. These analyses also allowed us to accurately manifest the increasing impact of age, sex, genetic relatedness, and ultimately tissue identity, in that order, in the acquisition of specific methylation patterns in the genome. Genes that were differentially methylated across different biological variables were determined and their potential impact is discussed. This study describes highly accurate DNA methylation-based estimators of age in deer mice and illustrates how differential methylation may be linked to adaptation at different conditions.
1
Citation3
0
Save
2k

The SARS-CoV-2 Spike protein induces long-term transcriptional perturbations of mitochondrial metabolic genes, causes cardiac fibrosis, and reduces myocardial contractile in obese mice

Xiaoling Cao et al.Jan 5, 2023
+7
T
Y
X
Abstract Background As the pandemic evolves, post-acute sequelae of CoV-2 (PACS) including cardiovascular manifestations have emerged as a new health threat. This study aims to study whether the Spike protein plus obesity can exacerbate PACS-related cardiomyopathy. Methods A Spike protein-pseudotyped (Spp) virus with the proper surface tropism of SARS-CoV-2 was developed for viral entry assay in vitro and administration into high fat diet (HFD)-fed mice. The systemic viral loads and cardiac transcriptomes were analyzed at 2 and 24 hrs, 3, 6, and 24 weeks post introducing (wpi) Spp using RNA-seq or real time RT-PCR. Echocardiography was used to monitor cardiac functions. Results Low-density lipoprotein cholesterol enhanced viral uptake in endothelial cells, macrophages, and cardiomyocyte-like H9C2 cells. Selective cardiac and adipose viral depositions were observed in HFD mice but not in normal-chow-fed mice. The cardiac transcriptional signatures in HFD mice at 3, 6, and 24 wpi showed systemic suppression of mitochondria respiratory chain genes including ATP synthases and nicotinamide adenine dinucleotide:ubiquinone oxidoreductase gene members, upregulation of stress pathway-related crucial factors such as nuclear factor-erythroid 2-related factor 1 and signal transducer and activator of transcription 5A, and increases in expression of glucose metabolism-associated genes. As compared with the age-matched HFD control mice, cardiac ejection fraction and fractional shortening were significantly decreased, while left ventricular end-systolic diameter and volume were significantly elevated, and cardiac fibrosis was increased in HFD mice at 24 wpi. Conclusion Our data demonstrated that the Spike protein could induce long-term transcriptional suppression of mitochondria metabolic genes and cause cardiac fibrosis and myocardial contractile impairment, providing mechanistic insights to PACS-related cardiomyopathy.
2k
Citation3
0
Save
0

Variations in cellular unfolded protein response, respiratory capacity, and stress tolerance in skin and lung fibroblasts of deer mice (Peromyscus maniculatus)

Kang Yap et al.Jan 1, 2023
+8
S
K
K
Evolutionary physiologists have long been interested in physiological mechanisms underpinning variation in life-history performance. Recent efforts to elucidate these mechanisms focused on bioenergetics and oxidative stress. One underappreciated area that could play a role in mediating variation in performance is the unfolded protein response (UPR), a cellular stress response that reduces secretory protein load, enhances endoplasmic reticulum (ER) protein folding and clearance capacity during stress and during its adaptive phase. Given that the ER and mitochondria interact to regulate cellular homeostasis, it seems intuitive that UPR phenotype would correlate strongly with mitochondrial physiology, which in turn would contribute to variations in whole-organism metabolism. One way researchers have been studying cellular controls of life-history traits is by assessing stress resistance and bioenergetic properties of primary dermal fibroblasts. However, it is unclear if findings from dermal fibroblasts can be generalized to other cell and tissue types, and if fibroblasts9 phenotypes are repeatable across different life-history stages. This study aimed to explore the relationships between UPR profile, cellular respiration, and stress resistance using primary dermal fibroblasts isolated at puberty and primary lung fibroblasts isolated at adulthood. Specifically, we tested if 1) UPR profile of dermal fibroblasts isolated at puberty corresponds to UPR profile of lung fibroblasts isolated at adulthood, 2) UPR profile of dermal fibroblasts isolated at puberty and lung fibroblasts isolated at adulthood correspond to cellular bioenergetics of lung fibroblasts isolated at adulthood, and 3) UPR profile of dermal fibroblasts isolated at puberty corresponds to multiplex stress resistance (ER stress, oxidative stress, DNA damage) of lung fibroblasts isolated at adulthood. We found that only tunicamycin induced BiP expression was repeatable in skin and lung fibroblasts. Tunicamycin induced expressions of BiP, GRP94, and CNX in skin fibroblasts predicted resistance of lung fibroblasts to tunicamycin, (but not thapsigargin and other inducers of lethal stress), which is indicative for the pro-survival role of UPR during stress. Tunicamycin induced BiP expression in skin and lung fibroblasts also predicted multiple cellular bioenergetics parameters in lung fibroblasts.
5

The infection-tolerant mammalian reservoir of Lyme disease and other zoonoses broadly counters the inflammatory effects of endotoxin

Gabriela Balderrama-Gutierrez et al.Dec 14, 2020
+6
A
J
G
ABSTRACT Animals that are competent natural reservoirs of zoonotic diseases commonly suffer little morbidity from the pathogens they persistently harbor. The mechanisms of this infection tolerance and the trade-off costs are poorly understood. We used exposure to a single dose of lipopolysaccharide (LPS) endotoxin as an experimental model of inflammation to compare the responses of the cricentine rodent Peromyscus leucopus , the white-footed deermouse, to that of Mus musculus , the standard laboratory model for pathogenesis studies. Four hours after injection with either LPS or saline, blood and spleen and liver tissues were collected postmortem and subjected to RNA-seq, untargeted metabolomics, and specific RT-qPCR. This was followed by analysis of differential expression at the gene, pathway, and empirical network levels. The deermice showed the same signs of sickness as the mice with LPS exposure, and in addition demonstrated comparable increases in levels of corticosterone and expression of interleukin (IL)-6, tumor necrosis factor, IL-1β, and acute phase reactants, including C-reactive protein. But whereas the M. musculus response to LPS was best-characterized by network analysis as cytokine-associated, the P. leucopus response was dominated by pathway terms associated with neutrophil activity. Dichotomies between the species in expression profiles of arginase 1 and nitric oxide synthase 2, as well as the ratios of IL-10 to IL-12, were consistent with a type M1 polarized macrophage response in the mice and a type M2 or alternatively-activated response in the deermice. Analysis of metabolites in the plasma and RNA in the tissues revealed differences between the two species in tryptophan metabolism during response to LPS. Two up-regulated genes in particular signified the difference between the species: Slpi (secretory leukocyte proteinase inhibitor) and Ibsp (integrin-binding protein sialoprotein). The latter was previously unrecognized in the context of inflammation or infection. Key RNA-seq findings in P. leucopus were replicated in a second LPS experiment with older animals, in a systemic bacterial infection model, and with cultivated fibroblasts. Taken together, the results indicate that the deermouse possesses several adaptive traits to moderate effects of inflammation and oxidative stress ensuing from infection. This seems to be at the cost of infection persistence and that is to the benefit of the pathogen.
199

Universal DNA methylation age across mammalian tissues

A.T. Lu et al.Jan 19, 2021
+190
D
J
A
ABSTRACT Aging is often perceived as a degenerative process resulting from random accrual of cellular damage over time. Despite this, age can be accurately estimated by epigenetic clocks based on DNA methylation profiles from almost any tissue of the body. Since such pan-tissue epigenetic clocks have been successfully developed for several different species, we hypothesized that one can build pan-mammalian clocks that measure age in all mammalian species. To address this, we generated data using 11,754 methylation arrays, each profiling up to 36 thousand cytosines in highly-conserved stretches of DNA, from 59 tissue-types derived from 185 mammalian species. From these methylation profiles, we constructed three age predictors, each with a single mathematical formula, termed universal pan-mammalian clocks that are accurate in estimating the age (r>0.96) of any mammalian tissue. Deviations between epigenetic age and chronological age relate to mortality risk in humans, mutations that affect the somatotropic axis in mice, and caloric restriction. We characterized specific cytosines, whose methylation levels change with age across most mammalian species. These cytosines are greatly enriched in polycomb repressive complex 2-binding sites, are located in regions that gradually lose chromatin accessibility with age and are proximal to genes that play a role in mammalian development, cancer, human obesity, and human longevity. Collectively, these results support the notion that aging is indeed evolutionarily conserved and coupled to developmental processes across all mammalian species - a notion that was long-debated without the benefit of this new compelling evidence. SUMMARY This study identifies and characterizes evolutionarily conserved cytosines implicated in the aging process across mammals and establishes pan mammalian epigenetic clocks.