LS
Lydia Staggs
Author with expertise in Epigenetic Modifications and Their Functional Implications
Achievements
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
2
(100% Open Access)
Cited by:
1
h-index:
10
/
i10-index:
10
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
5

Multi-tissue methylation clocks for age estimation in the common bottlenose dolphin

Todd Robeck et al.May 4, 2021
+10
A
Z
T
ABSTRACT Accurate identification of individual ages within wild bottlenose dolphins ( Tursiops truncatus ) is critical for determining population health and the development of population management strategies. As such, we analyzed DNA methylation patterns by applying a custom methylation array (HorvathMammalMethyl40) to both blood (n = 140) and skin samples (n = 87) from known age or approximate age (0 to 57 years) bottlenose dolphins. We present three bottlenose dolphin specific age estimation clocks using combined blood and skin (48 CpGs, R = 0.93, median absolute error = 2.13 years), blood only (64 CpGs, R = 0.97, error= 1.46 years) and skin only (39 CpGs, R = 0.95, error= 2.53). Our sex estimator based on 71 CpGs predicts the sex of any odontocete species with 99.5% accuracy. We characterize individual cytosines that correlate with sex and age in dolphins. The presented epigenetic clocks are expected to be useful for conservation efforts and for studying anthropogenic events.
5
Citation1
0
Save
199

Universal DNA methylation age across mammalian tissues

A.T. Lu et al.Jan 19, 2021
+190
D
J
A
ABSTRACT Aging is often perceived as a degenerative process resulting from random accrual of cellular damage over time. Despite this, age can be accurately estimated by epigenetic clocks based on DNA methylation profiles from almost any tissue of the body. Since such pan-tissue epigenetic clocks have been successfully developed for several different species, we hypothesized that one can build pan-mammalian clocks that measure age in all mammalian species. To address this, we generated data using 11,754 methylation arrays, each profiling up to 36 thousand cytosines in highly-conserved stretches of DNA, from 59 tissue-types derived from 185 mammalian species. From these methylation profiles, we constructed three age predictors, each with a single mathematical formula, termed universal pan-mammalian clocks that are accurate in estimating the age (r>0.96) of any mammalian tissue. Deviations between epigenetic age and chronological age relate to mortality risk in humans, mutations that affect the somatotropic axis in mice, and caloric restriction. We characterized specific cytosines, whose methylation levels change with age across most mammalian species. These cytosines are greatly enriched in polycomb repressive complex 2-binding sites, are located in regions that gradually lose chromatin accessibility with age and are proximal to genes that play a role in mammalian development, cancer, human obesity, and human longevity. Collectively, these results support the notion that aging is indeed evolutionarily conserved and coupled to developmental processes across all mammalian species - a notion that was long-debated without the benefit of this new compelling evidence. SUMMARY This study identifies and characterizes evolutionarily conserved cytosines implicated in the aging process across mammals and establishes pan mammalian epigenetic clocks.