DS
Dennis Schaefer-Babajew
Author with expertise in Coronavirus Disease 2019 Research
Rockefeller University, Laboratory of Molecular Genetics, Howard Hughes Medical Institute
Achievements
Open Access Advocate
Cited Author
Key Stats
Upvotes received:
0
Publications:
11
(100% Open Access)
Cited by:
373
h-index:
19
/
i10-index:
23
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
2

Increased memory B cell potency and breadth after a SARS-CoV-2 mRNA boost

Frauke Muecksch et al.May 9, 2022
+22
A
Z
F
The Omicron variant of SARS-CoV-2 infected many vaccinated and convalescent individuals1-3. Despite the reduced protection from infection, individuals who received three doses of an mRNA vaccine were highly protected from more serious consequences of infection4. Here we examine the memory B cell repertoire in a longitudinal cohort of individuals receiving three mRNA vaccine doses5,6. We find that the third dose is accompanied by an increase in, and evolution of, receptor-binding domain (RBD)-specific memory B cells. The increase is due to expansion of memory B cell clones that were present after the second dose as well as the emergence of new clones. The antibodies encoded by these cells showed significantly increased potency and breadth when compared with antibodies obtained after the second dose. Notably, the increase in potency was especially evident among newly developing clones of memory cells, which differed from persisting clones in targeting more conserved regions of the RBD. Overall, more than 50% of the analysed neutralizing antibodies in the memory compartment after the third mRNA vaccine dose neutralized the Omicron variant. Thus, individuals receiving three doses of an mRNA vaccine have a diverse memory B cell repertoire that can respond rapidly and produce antibodies capable of clearing even diversified variants such as Omicron. These data help to explain why a third dose of a vaccine that was not specifically designed to protect against variants is effective against variant-induced serious disease.
2
Paper
Citation216
1
Save
2k

Increased Potency and Breadth of SARS-CoV-2 Neutralizing Antibodies After a Third mRNA Vaccine Dose

Frauke Muecksch et al.Oct 13, 2023
+22
A
Z
F
The omicron variant of SARS-CoV-2 infected very large numbers of SARS-CoV-2 vaccinated and convalescent individuals 1-3 . The penetrance of this variant in the antigen experienced human population can be explained in part by the relatively low levels of plasma neutralizing activity against Omicron in people who were infected or vaccinated with the original Wuhan-Hu-1 strain 4-7 . The 3 rd mRNA vaccine dose produces an initial increase in circulating anti-Omicron neutralizing antibodies, but titers remain 10-20-fold lower than against Wuhan-Hu-1 and are, in many cases, insufficient to prevent infection 7 . Despite the reduced protection from infection, individuals that received 3 doses of an mRNA vaccine were highly protected from the more serious consequences of infection 8 . Here we examine the memory B cell repertoire in a longitudinal cohort of individuals receiving 3 mRNA vaccine doses 9,10 . We find that the 3 rd dose is accompanied by an increase in, and evolution of, anti-receptor binding domain specific memory B cells. The increase is due to expansion of memory B cell clones that were present after the 2 nd vaccine dose as well as the emergence of new clones. The antibodies encoded by these cells showed significantly increased potency and breadth when compared to antibodies obtained after the 2 nd vaccine dose. Notably, the increase in potency was especially evident among newly developing clones of memory cells that differed from the persisting clones in targeting more conserved regions of the RBD. Overall, more than 50% of the analyzed neutralizing antibodies in the memory compartment obtained from individuals receiving a 3 rd mRNA vaccine dose neutralized Omicron. Thus, individuals receiving 3 doses of an mRNA vaccine encoding Wuhan-Hu-1, have a diverse memory B cell repertoire that can respond rapidly and produce antibodies capable of clearing even diversified variants such as Omicron. These data help explain why a 3 rd dose of an mRNA vaccine that was not specifically designed to protect against variants is effective against variant-induced serious disease.
2k
Paper
Citation32
0
Save
460

Naturally enhanced neutralizing breadth to SARS-CoV-2 after one year

Zijun Wang et al.Oct 13, 2023
+25
D
F
Z
Over one year after its inception, the coronavirus disease-2019 (COVID-19) pandemic caused by severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) remains difficult to control despite the availability of several excellent vaccines. Progress in controlling the pandemic is slowed by the emergence of variants that appear to be more transmissible and more resistant to antibodies 1,2 . Here we report on a cohort of 63 COVID-19-convalescent individuals assessed at 1.3, 6.2 and 12 months after infection, 41% of whom also received mRNA vaccines 3,4 . In the absence of vaccination antibody reactivity to the receptor binding domain (RBD) of SARS-CoV-2, neutralizing activity and the number of RBD-specific memory B cells remain relatively stable from 6 to 12 months. Vaccination increases all components of the humoral response, and as expected, results in serum neutralizing activities against variants of concern that are comparable to or greater than neutralizing activity against the original Wuhan Hu-1 achieved by vaccination of naïve individuals 2,5-8 . The mechanism underlying these broad-based responses involves ongoing antibody somatic mutation, memory B cell clonal turnover, and development of monoclonal antibodies that are exceptionally resistant to SARS-CoV-2 RBD mutations, including those found in variants of concern 4,9 . In addition, B cell clones expressing broad and potent antibodies are selectively retained in the repertoire over time and expand dramatically after vaccination. The data suggest that immunity in convalescent individuals will be very long lasting and that convalescent individuals who receive available mRNA vaccines will produce antibodies and memory B cells that should be protective against circulating SARS-CoV-2 variants.
460
Citation26
0
Save
715

High genetic barrier to escape from human polyclonal SARS-CoV-2 neutralizing antibodies

Fabian Schmidt et al.Oct 23, 2023
+11
M
Y
F
The number and variability of the neutralizing epitopes targeted by polyclonal antibodies in SARS-CoV-2 convalescent and vaccinated individuals are key determinants of neutralization breadth and, consequently, the genetic barrier to viral escape. Using chimeric viruses and antibody-selected viral mutants, we show that multiple neutralizing epitopes, within and outside the viral receptor binding domain (RBD), are variably targeted by polyclonal plasma antibodies and coincide with sequences that are enriched for diversity in natural SARS-CoV-2 populations. By combining plasma-selected spike substitutions, we generated synthetic ‘polymutant’ spike proteins that resisted polyclonal antibody neutralization to a similar degree as currently circulating variants of concern (VOC). Importantly, by aggregating VOC-associated and plasma-selected spike substitutions into a single polymutant spike protein, we show that 20 naturally occurring mutations in SARS-CoV-2 spike are sufficient to confer near-complete resistance to the polyclonal neutralizing antibodies generated by convalescents and mRNA vaccine recipients. Strikingly however, plasma from individuals who had been infected and subsequently received mRNA vaccination, neutralized this highly resistant SARS-CoV-2 polymutant, and also neutralized diverse sarbecoviruses. Thus, optimally elicited human polyclonal antibodies against SARS-CoV-2 should be resilient to substantial future SARS-CoV-2 variation and may confer protection against future sarbecovirus pandemics.
179

Persistent Cellular Immunity to SARS-CoV-2 Infection

Gaëlle Breton et al.Oct 24, 2023
+7
T
P
G
SARS-CoV-2 is responsible for an ongoing pandemic that affected millions of individuals around the globe. To gain further understanding of the immune response in recovered individuals we measured T cell responses in paired samples obtained an average of 1.3 and 6.1 months after infection from 41 individuals. The data indicate that recovered individuals show persistent polyfunctional SARS-CoV-2 antigen specific memory that could contribute to rapid recall responses. In addition, recovered individuals show enduring immune alterations in relative numbers of CD4 + and CD8 + T cells, expression of activation/exhaustion markers, and cell division.We show that SARS-CoV-2 infection elicits broadly reactive and highly functional memory T cell responses that persist 6 months after infection. In addition, recovered individuals show enduring immune alterations in CD4 + and CD8 + T cells compartments.
179
Citation14
0
Save
3k

Anti- SARS-CoV-2 Receptor Binding Domain Antibody Evolution after mRNA Vaccination

Alice Cho et al.Oct 24, 2023
+24
D
F
A
Summary Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection produces B-cell responses that continue to evolve for at least one year. During that time, memory B cells express increasingly broad and potent antibodies that are resistant to mutations found in variants of concern 1 . As a result, vaccination of coronavirus disease 2019 (COVID-19) convalescent individuals with currently available mRNA vaccines produces high levels of plasma neutralizing activity against all variants tested 1, 2 . Here, we examine memory B cell evolution 5 months after vaccination with either Moderna (mRNA-1273) or Pfizer- BioNTech (BNT162b2) mRNA vaccines in a cohort of SARS-CoV-2 naïve individuals. Between prime and boost, memory B cells produce antibodies that evolve increased neutralizing activity, but there is no further increase in potency or breadth thereafter. Instead, memory B cells that emerge 5 months after vaccination of naïve individuals express antibodies that are similar to those that dominate the initial response. While individual memory antibodies selected over time by natural infection have greater potency and breadth than antibodies elicited by vaccination, the overall neutralizing potency of plasma is greater following vaccination. These results suggest that boosting vaccinated individuals with currently available mRNA vaccines will increase plasma neutralizing activity but may not produce antibodies with breadth equivalent to those obtained by vaccinating convalescent individuals.
3k
Citation12
0
Save
17

Antibody evolution to SARS-CoV-2 after single-dose Ad26.COV2.S vaccine

Alice Cho et al.Oct 24, 2023
+21
Z
F
A
Abstract The single dose Ad.26.COV.2 (Janssen) vaccine elicits lower levels of neutralizing antibodies and shows more limited efficacy in protection against infection than either of the available mRNA vaccines. In addition, the Ad.26.COV.2 has been less effective in protection against severe disease during the Omicron surge. Here, we examined the memory B cell response to single dose Ad.26.COV.2 vaccination. Compared to mRNA vaccines, Ad.26.COV.2 recipients had significantly lower numbers of RBD-specific memory B cells 1.5 or 6 months after vaccination. Memory antibodies elicited by both vaccine types show comparable neutralizing potency against SARS-CoV-2 and Delta. However, the number of memory cells producing Omicron neutralizing antibodies was somewhat lower after Ad.26.COV.2 than mRNA vaccination. The data help explain why boosting Ad.26.COV.2 vaccine recipients with mRNA vaccines is effective, and why the Janssen vaccine appears to have been less protective against severe disease during the Omicron surge than the mRNA vaccine. One-Sentence Summary Ad.26.COV.2 vaccine results in lower quantity but comparable quality of protective memory B cells compared to mRNA vaccines.
17
Citation1
0
Save
4k

mRNA vaccine-elicited antibodies to SARS-CoV-2 and circulating variants

Zijun Wang et al.Oct 11, 2023
+31
Y
F
Z
To date severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) has infected over 100 million individuals resulting in over two million deaths. Many vaccines are being deployed to prevent coronavirus disease 2019 (COVID-19) including two novel mRNA-based vaccines 1,2 . These vaccines elicit neutralizing antibodies and appear to be safe and effective, but the precise nature of the elicited antibodies is not known 3–6 . Here we report on the antibody and memory B cell responses in a cohort of 20 volunteers who received either the Moderna (mRNA-1273) or Pfizer-BioNTech (BNT162b2) vaccines. Consistent with prior reports, 8 weeks after the second vaccine injection volunteers showed high levels of IgM, and IgG anti-SARS-CoV-2 spike protein (S) and receptor binding domain (RBD) binding titers 3,5,6 . Moreover, the plasma neutralizing activity, and the relative numbers of RBD-specific memory B cells were equivalent to individuals who recovered from natural infection 7,8 . However, activity against SARS-CoV-2 variants encoding E484K or N501Y or the K417N:E484K:N501Y combination was reduced by a small but significant margin. Consistent with these findings, vaccine-elicited monoclonal antibodies (mAbs) potently neutralize SARS-CoV-2, targeting a number of different RBD epitopes in common with mAbs isolated from infected donors. Structural analyses of mAbs complexed with S trimer suggest that vaccine- and virus-encoded S adopts similar conformations to induce equivalent anti-RBD antibodies. However, neutralization by 14 of the 17 most potent mAbs tested was reduced or abolished by either K417N, or E484K, or N501Y mutations. Notably, the same mutations were selected when recombinant vesicular stomatitis virus (rVSV)/SARS-CoV-2 S was cultured in the presence of the vaccine elicited mAbs. Taken together the results suggest that the monoclonal antibodies in clinical use should be tested against newly arising variants, and that mRNA vaccines may need to be updated periodically to avoid potential loss of clinical efficacy.
225

Development of potency, breadth and resilience to viral escape mutations in SARS-CoV-2 neutralizing antibodies

Frauke Muecksch et al.Oct 11, 2023
+25
C
Y
F
Summary Antibodies elicited in response to infection undergo somatic mutation in germinal centers that can result in higher affinity for the cognate antigen. To determine the effects of somatic mutation on the properties of SARS-CoV-2 spike receptor-binding domain (RBD)-specific antibodies, we analyzed six independent antibody lineages. As well as increased neutralization potency, antibody evolution changed pathways for acquisition of resistance and, in some cases, restricted the range of neutralization escape options. For some antibodies, maturation apparently imposed a requirement for multiple spike mutations to enable escape. For certain antibody lineages, maturation enabled neutralization of circulating SARS-CoV-2 variants of concern and heterologous sarbecoviruses. Antibody-antigen structures revealed that these properties resulted from substitutions that allowed additional variability at the interface with the RBD. These findings suggest that increasing antibody diversity through prolonged or repeated antigen exposure may improve protection against diversifying SARS-CoV-2 populations, and perhaps against other pandemic threat coronaviruses.
2k

Evolution of Antibody Immunity to SARS-CoV-2

Christian Gaebler et al.Oct 11, 2023
+39
J
Z
C
Severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) has infected 78 million individuals and is responsible for over 1.7 million deaths to date. Infection is associated with development of variable levels of antibodies with neutralizing activity that can protect against infection in animal models. Antibody levels decrease with time, but the nature and quality of the memory B cells that would be called upon to produce antibodies upon re-infection has not been examined. Here we report on the humoral memory response in a cohort of 87 individuals assessed at 1.3 and 6.2 months after infection. We find that IgM, and IgG anti-SARS-CoV-2 spike protein receptor binding domain (RBD) antibody titers decrease significantly with IgA being less affected. Concurrently, neutralizing activity in plasma decreases by five-fold in pseudotype virus assays. In contrast, the number of RBD-specific memory B cells is unchanged. Memory B cells display clonal turnover after 6.2 months, and the antibodies they express have greater somatic hypermutation, increased potency and resistance to RBD mutations, indicative of continued evolution of the humoral response. Analysis of intestinal biopsies obtained from asymptomatic individuals 4 months after coronavirus disease-2019 (COVID-19) onset, using immunofluorescence, or polymerase chain reaction, revealed persistence of SARS-CoV-2 nucleic acids and immunoreactivity in the small bowel of 7 out of 14 volunteers. We conclude that the memory B cell response to SARS-CoV-2 evolves between 1.3 and 6.2 months after infection in a manner that is consistent with antigen persistence.