HM
Hakhamanesh Mostafavi
Author with expertise in Genomic Studies and Association Analyses
Achievements
Cited Author
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
14
(71% Open Access)
Cited by:
749
h-index:
12
/
i10-index:
13
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
1

Genetic interactions drive heterogeneity in causal variant effect sizes for gene expression and complex traits

Roshni Patel et al.Dec 8, 2021
Abstract Despite the growing number of genome-wide association studies (GWAS), it remains unclear to what extent gene-by-gene and gene-by-environment interactions influence complex traits in humans. The magnitude of genetic interactions in complex traits has been difficult to quantify because GWAS are generally underpowered to detect individual interactions of small effect. Here, we develop a method to test for genetic interactions that aggregates information across all trait-associated loci. Specifically, we test whether SNPs in regions of European ancestry shared between European American and admixed African American individuals have the same causal effect sizes. We hypothesize that in African Americans, the presence of genetic interactions will drive the causal effect sizes of SNPs in regions of European ancestry to be more similar to those of SNPs in regions of African ancestry. We apply our method to two traits: gene expression in 296 African Americans and 482 European Americans in the Multi-Ethnic Study of Atherosclerosis (MESA) and low-density lipoprotein cholesterol (LDL-C) in 74K African Americans and 296K European Americans in the Million Veteran Program (MVP). We find significant evidence for genetic interactions in our analysis of gene expression; for LDL-C, we observe a similar point estimate although this is not significant, likely due to lower statistical power. These results suggest that gene-by-gene or gene-by-environment interactions modify the effect sizes of causal variants in human complex traits.
1
Citation3
0
Save
0

Bayesian model comparison for rare variant association studies

Guhan Venkataraman et al.Jan 31, 2018
Abstract Whole genome sequencing studies applied to large populations or biobanks with extensive phenotyping raise new analytic challenges. The need to consider many variants at a locus or group of genes simultaneously and the potential to study many correlated phenotypes with shared genetic architecture provide opportunities for discovery and inference that are not addressed by the traditional one variant, one phenotype association study. Here, we introduce a Bayesian model comparison approach that we refer to as MRP (Multiple Rare-variants and Phenotypes) for rare-variant association studies that considers correlation, scale, and direction of genetic effects across a group of genetic variants, phenotypes, and studies. The approach requires only summary statistic data. To demonstrate the efficacy of MRP, we apply our method to exome sequencing data (N = 184,698) across 2,019 traits from the UK Biobank, aggregating signals in genes. MRP demonstrates an ability to recover previously-verified signals such as associations between PCSK9 and LDL cholesterol levels. We additionally find MRP effective in conducting meta-analyses in exome data. Notable non-biomarker findings include associations between MC1R and red hair color and skin color, IL17RA and monocyte count, IQGAP2 and mean platelet volume, and JAK2 and platelet count and crit (mass). Finally, we apply MRP in a multi-phenotype setting; after clustering the 35 biomarker phenotypes based on genetic correlation estimates into four clusters, we find that joint analysis of these phenotypes results in substantial power gains for gene-trait associations, such as in TNFRSF13B in one of the clusters containing diabetes and lipid-related traits. Overall, we show that the MRP model comparison approach is able to improve upon useful features from widely-used meta-analysis approaches for rare variant association analyses and prioritize protective modifiers of disease risk.
0
Citation3
0
Save
0

Conditional frequency spectra as a tool for studying selection on complex traits in biobanks

Roshni Patel et al.Jun 17, 2024
Abstract Natural selection on complex traits is difficult to study in part due to the ascertainment inherent to genome-wide association studies (GWAS). The power to detect a trait-associated variant in GWAS is a function of frequency and effect size — but for traits under selection, the effect size of a variant determines the strength of selection against it, constraining its frequency. To account for GWAS ascertainment, we propose studying the joint distribution of allele frequencies across populations, conditional on the frequencies in the GWAS cohort. Before considering these conditional frequency spectra, we first characterized the impact of selection and non-equilibrium demography on allele frequency dynamics forwards and backwards in time. We then used these results to understand conditional frequency spectra under realistic human demography. Finally, we investigated empirical conditional frequency spectra for GWAS variants associated with 106 complex traits, finding compelling evidence for either stabilizing or purifying selection. Our results provide insight into polygenic score portability and other properties of variants ascertained with GWAS, highlighting the utility of conditional frequency spectra.
0
Citation1
0
Save
0

Identifying genetic variants that affect viability in large cohorts

Hakhamanesh Mostafavi et al.Nov 7, 2016
A number of open questions in human evolutionary genetics would become tractable if we were able to directly measure evolutionary fitness. As a step towards this goal, we developed a method to examine whether individual genetic variants, or sets of genetic variants, currently influence viability. The approach consists in testing whether the frequency of an allele varies across ages, accounting for variation in ancestry. We applied it to the Genetic Epidemiology Research on Aging (GERA) cohort and to the parents of participants in the UK Biobank. Across the genome, we find only a few common variants with large effects on age-specific mortality: tagging the APOE ϵ4 allele and near CHRNA3. These results suggest that when large, even late onset effects are kept at low frequency by purifying selection. Testing viability effects of sets of genetic variants that jointly influence one of 42 traits, we detect a number of strong signals. In participants of the UK Biobank study of British ancestry, we find that variants that delay puberty timing are enriched in longer-lived parents (P~6×10-6 for fathers and P~2×10-3 for mothers), consistent with epidemiological studies. Similarly, in mothers, variants associated with later age at first birth are associated with a longer lifespan (P~1×10-3). Signals are also observed for variants influencing cholesterol levels, risk of coronary artery disease, body mass index, as well as risk of asthma. These signals exhibit consistent effects in the GERA cohort and among participants of the UK Biobank of non-British ancestry. Moreover, we see marked differences between males and females, most notably at the CHRNA3 locus, and variants associated with risk of coronary artery disease and cholesterol levels. Beyond our findings, the analysis serves as a proof of principle for how upcoming biomedical datasets can be used to learn about selection effects in contemporary humans.
Load More