BY
Belgin Yalçın
Author with expertise in Mechanisms of Chemotherapy-Induced Cognitive Impairment
Achievements
Open Access Advocate
Cited Author
Key Stats
Upvotes received:
0
Publications:
4
(100% Open Access)
Cited by:
81
h-index:
5
/
i10-index:
4
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
210

Mild respiratory SARS-CoV-2 infection can cause multi-lineage cellular dysregulation and myelin loss in the brain

Anthony Fernández-Castañeda et al.Jan 10, 2022
+30
P
J
A
Survivors of Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2) infection frequently experience lingering neurological symptoms, including impairment in attention, concentration, speed of information processing and memory. This long-COVID cognitive syndrome shares many features with the syndrome of cancer therapy-related cognitive impairment (CRCI). Neuroinflammation, particularly microglial reactivity and consequent dysregulation of hippocampal neurogenesis and oligodendrocyte lineage cells, is central to CRCI. We hypothesized that similar cellular mechanisms may contribute to the persistent neurological symptoms associated with even mild SARS-CoV-2 respiratory infection. Here, we explored neuroinflammation caused by mild respiratory SARS-CoV-2 infection - without neuroinvasion - and effects on hippocampal neurogenesis and the oligodendroglial lineage. Using a mouse model of mild respiratory SARS-CoV-2 infection induced by intranasal SARS-CoV-2 delivery, we found white matter-selective microglial reactivity, a pattern observed in CRCI. Human brain tissue from 9 individuals with COVID-19 or SARS-CoV-2 infection exhibits the same pattern of prominent white matter-selective microglial reactivity. In mice, pro-inflammatory CSF cytokines/chemokines were elevated for at least 7-weeks post-infection; among the chemokines demonstrating persistent elevation is CCL11, which is associated with impairments in neurogenesis and cognitive function. Humans experiencing long-COVID with cognitive symptoms (48 subjects) similarly demonstrate elevated CCL11 levels compared to those with long-COVID who lack cognitive symptoms (15 subjects). Impaired hippocampal neurogenesis, decreased oligodendrocytes and myelin loss in subcortical white matter were evident at 1 week, and persisted until at least 7 weeks, following mild respiratory SARS-CoV-2 infection in mice. Taken together, the findings presented here illustrate striking similarities between neuropathophysiology after cancer therapy and after SARS-CoV-2 infection, and elucidate cellular deficits that may contribute to lasting neurological symptoms following even mild SARS-CoV-2 infection.
210
Citation73
10
Save
1

Myelin plasticity in ventral tegmental area is required for opioid reward

Belgin Yalçın et al.Sep 3, 2022
+6
I
K
B
Abstract All drugs of abuse induce long-lasting changes in synaptic transmission and neural circuit function that underlie substance use disorders. Here, we demonstrate that dopaminergic neuronal activity-regulated myelin plasticity is a key modulator of dopaminergic circuit function and opioid reward. Oligodendroglial lineage cells respond to dopaminergic neuronal activity evoked by either optogenetic stimulation or by morphine administration specifically within the reward center ventral tegmental area (VTA), but not along the axonal projections in the medial forebrain bundle nor within the target nucleus accumbens (NAc). Genetic blockade of oligodendrogenesis dampens NAc dopamine release dynamics, which is critical for reward learning, and impairs behavioral conditioning to morphine. Our findings identify dopaminergic neuronal activity-regulated myelin plasticity as an important circuit modification that is required for opioid reward. One-Sentence Summary Activity-dependent myelin plasticity in the ventral tegmental area modulates dopaminergic circuit function and opioid reward
0

Modeling of axonal endoplasmic reticulum network by spastic paraplegia proteins

Belgin Yalçın et al.Sep 29, 2016
+10
M
L
B
Abstract Axons contain an endoplasmic reticulum (ER) network that is largely smooth and tubular, thought to be continuous with ER throughout the neuron, and distinct in form and function from rough ER; the mechanisms that form this continuous network in axons are not well understood. Mutations affecting proteins of the reticulon or REEP families, which contain intramembrane hairpin domains that can model ER membranes, cause an axon degenerative disease, hereditary spastic paraplegia (HSP). Here, we show that these proteins are required for modeling the axonal ER network in Drosophila . Loss of reticulon or REEP proteins can lead to expansion of ER sheets, and to partial loss of ER from distal motor axons. Ultrastructural analysis reveals an extensive ER network in every axon of peripheral nerves, which is reduced in larvae that lack reticulon and REEP proteins, with defects including larger and fewer tubules, and occasional gaps in the ER network, consistent with loss of membrane curvature. Therefore HSP hairpin-containing proteins are required for shaping and continuity of the axonal ER network, suggesting an important role for ER modeling in axon maintenance and function.
0
Citation3
0
Save
66

Neuronal-Activity Dependent Mechanisms of Small Cell Lung Cancer Progression

Solomiia Savchuk et al.Jan 20, 2023
+14
W
K
S
Summary Neural activity is increasingly recognized as a critical regulator of cancer growth. In the brain, neuronal activity robustly influences glioma growth both through paracrine mechanisms and through electrochemical integration of malignant cells into neural circuitry via neuron-to-glioma synapses, while perisynaptic neurotransmitter signaling drives breast cancer brain metastasis growth. Outside of the CNS, innervation of tumors such as prostate, breast, pancreatic and gastrointestinal cancers by peripheral nerves similarly regulates cancer progression. However, the extent to which the nervous system regulates lung cancer progression, either in the lung or when metastatic to brain, is largely unexplored. Small cell lung cancer (SCLC) is a lethal high-grade neuroendocrine tumor that exhibits a strong propensity to metastasize to the brain. Here we demonstrate that, similar to glioma, metastatic SCLC cells in the brain co-opt neuronal activity-regulated mechanisms to stimulate growth and progression. Optogenetic stimulation of cortical neuronal activity drives proliferation and invasion of SCLC brain metastases. In the brain, SCLC cells exhibit electrical currents and consequent calcium transients in response to neuronal activity, and direct SCLC cell membrane depolarization is sufficient to promote the growth of SCLC tumors. In the lung, vagus nerve transection markedly inhibits primary lung tumor formation, progression and metastasis, highlighting a critical role for innervation in overall SCLC initiation and progression. Taken together, these studies illustrate that neuronal activity plays a crucial role in dictating SCLC pathogenesis in both primary and metastatic sites.