MM
Michelle Monje
Author with expertise in Gliomas
Achievements
Cited Author
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
63
(86% Open Access)
Cited by:
18,475
h-index:
70
/
i10-index:
137
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Single-cell RNA-seq supports a developmental hierarchy in human oligodendroglioma

Itay Tirosh et al.Nov 1, 2016
A single sentence summarizing your paper (websum), which will appear online on the table of contents and in e-alerts, has been provided below. Please check this sentence for accuracy and appropriate emphasis. Itay Tirosh et al. use single-cell RNA-seq to show that human oligodendrogliomas contain cancer cells specialized into two types of glia, as well as a rare subpopulation of cells that are undifferentiated and display a gene expression program that is characteristic of neural stem cells. By coupling this analysis with functional assessment of oligodendroglioma cell lines, the authors provide support for a cancer stem cell model of tumour development in this particular context. Although human tumours are shaped by the genetic evolution of cancer cells, evidence also suggests that they display hierarchies related to developmental pathways and epigenetic programs in which cancer stem cells (CSCs) can drive tumour growth and give rise to differentiated progeny1. Yet, unbiased evidence for CSCs in solid human malignancies remains elusive. Here we profile 4,347 single cells from six IDH1 or IDH2 mutant human oligodendrogliomas by RNA sequencing (RNA-seq) and reconstruct their developmental programs from genome-wide expression signatures. We infer that most cancer cells are differentiated along two specialized glial programs, whereas a rare subpopulation of cells is undifferentiated and associated with a neural stem cell expression program. Cells with expression signatures for proliferation are highly enriched in this rare subpopulation, consistent with a model in which CSCs are primarily responsible for fuelling the growth of oligodendroglioma in humans. Analysis of copy number variation (CNV) shows that distinct CNV sub-clones within tumours display similar cellular hierarchies, suggesting that the architecture of oligodendroglioma is primarily dictated by developmental programs. Subclonal point mutation analysis supports a similar model, although a full phylogenetic tree would be required to definitively determine the effect of genetic evolution on the inferred hierarchies. Our single-cell analyses provide insight into the cellular architecture of oligodendrogliomas at single-cell resolution and support the cancer stem cell model, with substantial implications for disease management.
0
Citation981
0
Save
0

Electrical and synaptic integration of glioma into neural circuits

Humsa Venkatesh et al.Sep 18, 2019
High-grade gliomas are lethal brain cancers whose progression is robustly regulated by neuronal activity. Activity-regulated release of growth factors promotes glioma growth, but this alone is insufficient to explain the effect that neuronal activity exerts on glioma progression. Here we show that neuron and glioma interactions include electrochemical communication through bona fide AMPA receptor-dependent neuron–glioma synapses. Neuronal activity also evokes non-synaptic activity-dependent potassium currents that are amplified by gap junction-mediated tumour interconnections, forming an electrically coupled network. Depolarization of glioma membranes assessed by in vivo optogenetics promotes proliferation, whereas pharmacologically or genetically blocking electrochemical signalling inhibits the growth of glioma xenografts and extends mouse survival. Emphasizing the positive feedback mechanisms by which gliomas increase neuronal excitability and thus activity-regulated glioma growth, human intraoperative electrocorticography demonstrates increased cortical excitability in the glioma-infiltrated brain. Together, these findings indicate that synaptic and electrical integration into neural circuits promotes glioma progression. Neurons form synapses onto glioma cells, and depolarization of glioma membranes promotes glioma growth in vivo, whereas blocking electrochemical signalling blocks tumour growth.
Load More