LZ
Laure‐Emmanuelle Zaragosi
Author with expertise in Comprehensive Integration of Single-Cell Transcriptomic Data
Université Côte d'Azur, French National Centre for Scientific Research, Institut de Pharmacologie Moléculaire et Cellulaire
+ 10 more
Achievements
Open Access Advocate
Cited Author
Key Stats
Upvotes received:
0
Publications:
5
(80% Open Access)
Cited by:
134
h-index:
28
/
i10-index:
32
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
1

An integrated cell atlas of the lung in health and disease

Lisa Sikkema et al.Jan 26, 2024
+94
D
C
L
Abstract Single-cell technologies have transformed our understanding of human tissues. Yet, studies typically capture only a limited number of donors and disagree on cell type definitions. Integrating many single-cell datasets can address these limitations of individual studies and capture the variability present in the population. Here we present the integrated Human Lung Cell Atlas (HLCA), combining 49 datasets of the human respiratory system into a single atlas spanning over 2.4 million cells from 486 individuals. The HLCA presents a consensus cell type re-annotation with matching marker genes, including annotations of rare and previously undescribed cell types. Leveraging the number and diversity of individuals in the HLCA, we identify gene modules that are associated with demographic covariates such as age, sex and body mass index, as well as gene modules changing expression along the proximal-to-distal axis of the bronchial tree. Mapping new data to the HLCA enables rapid data annotation and interpretation. Using the HLCA as a reference for the study of disease, we identify shared cell states across multiple lung diseases, including SPP1 + profibrotic monocyte-derived macrophages in COVID-19, pulmonary fibrosis and lung carcinoma. Overall, the HLCA serves as an example for the development and use of large-scale, cross-dataset organ atlases within the Human Cell Atlas.
-1

An integrated cell atlas of the human lung in health and disease

Lisa Sikkema et al.Oct 11, 2023
+71
L
D
L
ABSTRACT Organ- and body-scale cell atlases have the potential to transform our understanding of human biology. To capture the variability present in the population, these atlases must include diverse demographics such as age and ethnicity from both healthy and diseased individuals. The growth in both size and number of single-cell datasets, combined with recent advances in computational techniques, for the first time makes it possible to generate such comprehensive large-scale atlases through integration of multiple datasets. Here, we present the integrated Human Lung Cell Atlas (HLCA) combining 46 datasets of the human respiratory system into a single atlas spanning over 2.2 million cells from 444 individuals across health and disease. The HLCA contains a consensus re-annotation of published and newly generated datasets, resolving under- or misannotation of 59% of cells in the original datasets. The HLCA enables recovery of rare cell types, provides consensus marker genes for each cell type, and uncovers gene modules associated with demographic covariates and anatomical location within the respiratory system. To facilitate the use of the HLCA as a reference for single-cell lung research and allow rapid analysis of new data, we provide an interactive web portal to project datasets onto the HLCA. Finally, we demonstrate the value of the HLCA reference for interpreting disease-associated changes. Thus, the HLCA outlines a roadmap for the development and use of organ-scale cell atlases within the Human Cell Atlas.
0

Cyclin O controls entry into the cell-cycle variant required for multiciliated cell differentiation

Michella Damaa et al.May 28, 2024
+23
R
J
M
Multiciliated cells (MCC) ensure proper fluid circulation in various organs in metazoans. Their differentiation is marked by the massive amplification of cilia-nucleating centrioles and is known to be controlled by various cell cycle components. In a companion study, we show that the differentiation of MCC is driven by a genuine cell-cycle variant characterized by sequential and wave-like expression of canonical and non-canonical cyclins such as Cyclin O (CCNO). Patients with CCNO mutations exhibit a subtype of Primary Ciliary Dyskinesia (PCD) designated as Reduced Generation of Multiple Motile Cilia (RGMC), yet the role of CCNO during MCC differentiation remains unclear. Here, using mice and human cellular models, single cell transcriptomics and functional studies, we show that Ccno is activated during a strategic temporal window at the crossroads between the onset of MCC differentiation, the entry into the MCC cell cycle variant, and the activation of the centriole biogenesis program. We find that the absence of Ccno leads to a block of MCC progenitor differen- tiation at the G1/S-like transition, just before the beginning of centriole formation. This leads to a complete lack of centrioles and cilia in mouse brain and human airway MCC. Altogether, our study identifies CCNO as a core regulator of entry into the MCC cell cycle variant and shows that the coupling of centriole biogenesis to an S-like phase, maintained in MCC, is dependent on CCNO.
0

Identification of a new cell cycle variant during multiciliated cell differentiation

Jacques Serizay et al.May 28, 2024
+9
A
M
J
A complex and conserved regulatory network drives the cell cycle. Individual components of this network are sometimes used in differentiated cells, i.e. to control organelle destruction in mammalian lens cells or light response in land plants. Some differentiated cells co-opt cell-cycle regulators more largely, to increase their ploidy using a cell cycle variant named endoreplication. Using single-cell RNA-seq profiling and functional assays in differentiating multiciliated cells, we identified a novel type of cell cycle variant that supports cytoplasmic organelle, rather than nuclear content amplification. This variant operates in post-mitotic, centriole-amplifying differentiating multiciliated cells and is characterized by (i) a circular trajectory of the transcriptome, (ii) sequential expression of more than 70% of the genes involved in S, G2 and M-like progression along this trajectory, and (iii) successive waves of cyclins. This cell cycle variant is tailored by the expression of the non-canonical cyclins O and A1 - which replace the transcriptionally silent cyclins E2 and A2 - and by the silencing of the APC/C inhibitor Emi1, two switches also detected in male meiosis, another variant of the canonical cell cycle where centriole and DNA replications are uncoupled. Re-expressing Cyclin E2, cyclin A2 or Emi1 is sufficient to induce partial replication and mitosis, suggesting that change in the regulation of expression of a few cell cycle key players drives a qualitative and quantitative tuning of Cdk activity, allowing the diversion of the cell cycle in the multiciliation variant. We also propose that this new cell cycle variant relies on the existence of a cytoplasmic - or centriolar - Cdk threshold, lower than the S-phase threshold, which affects only the cytoplasmic reorganization.
0

Single-cell RNA sequencing reveals novel cell differentiation dynamics during human airway epithelium regeneration

Sandra García et al.May 6, 2020
+10
K
M
S
Background: It is usually considered that the upper airway epithelium is composed of multiciliated, goblet, secretory and basal cells, which collectively constitute an efficient first line of defense against inhalation of noxious substances. Upon injury, regeneration of this epithelium through proliferation and differentiation can restore a proper mucociliary function. However, in chronic airway diseases, the injured epithelium frequently displays defective repair leading to tissue remodeling, characterized by a loss of multiciliated cells and mucus hyper-secretion. Delineating drivers of differentiation dynamics and cell fate in the human airway epithelium is important to preserve homeostasis. Results: We have used single cell transcriptomics to characterize the sequence of cellular and molecular processes taking place during human airway epithelium regeneration. We have characterized airway subpopulations with high resolution and lineage inference algorithms have unraveled cell trajectories from basal to luminal cells, providing markers for specific cell populations, such as deuterosomal cells, i.e. precursors of multiciliated cells. We report that goblet cells, like secretory cells, can act as precursors of multiciliated cells. Our study provides a repertoire of molecules involved in key steps of the regeneration process, either keratins or components of the Notch, Wnt or BMP/TGFbeta signaling pathways. Our findings were confirmed in independent experiments performed on fresh human and pig airway samples, and on mouse tracheal epithelial cells. Conclusions: Our single-cell RNA-seq study provides novel insights about airway epithelium differentiation dynamics, clarifies cell trajectories between secretory, goblet and multiciliated cells, identifies novel cell subpopulations, and maps the activation and repression of key signaling pathways.