YX
Yan Xu
Author with expertise in Neonatal Lung Development and Respiratory Morbidity
Cincinnati Children's Hospital Medical Center, Oil Crops Research Institute, Ministry of Agriculture and Rural Affairs
+ 9 more
Achievements
Open Access Advocate
Cited Author
Key Stats
Upvotes received:
0
Publications:
15
(93% Open Access)
Cited by:
149
h-index:
59
/
i10-index:
130
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
1

An integrated cell atlas of the lung in health and disease

Lisa Sikkema et al.Jan 26, 2024
+94
D
C
L
Abstract Single-cell technologies have transformed our understanding of human tissues. Yet, studies typically capture only a limited number of donors and disagree on cell type definitions. Integrating many single-cell datasets can address these limitations of individual studies and capture the variability present in the population. Here we present the integrated Human Lung Cell Atlas (HLCA), combining 49 datasets of the human respiratory system into a single atlas spanning over 2.4 million cells from 486 individuals. The HLCA presents a consensus cell type re-annotation with matching marker genes, including annotations of rare and previously undescribed cell types. Leveraging the number and diversity of individuals in the HLCA, we identify gene modules that are associated with demographic covariates such as age, sex and body mass index, as well as gene modules changing expression along the proximal-to-distal axis of the bronchial tree. Mapping new data to the HLCA enables rapid data annotation and interpretation. Using the HLCA as a reference for the study of disease, we identify shared cell states across multiple lung diseases, including SPP1 + profibrotic monocyte-derived macrophages in COVID-19, pulmonary fibrosis and lung carcinoma. Overall, the HLCA serves as an example for the development and use of large-scale, cross-dataset organ atlases within the Human Cell Atlas.
7

Single cell transcriptomic profiling identifies molecular phenotypes of newborn human lung cells

Soumyaroop Bhattacharya et al.Oct 24, 2023
+17
C
J
S
Abstract Rationale While animal model studies have extensively defined mechanisms controlling cell diversity in the developing mammalian lung, the limited data available from late stage human lung development represents a significant knowledge gap. The NHLBI Molecular Atlas of Lung Development Program (LungMAP) seeks to fill this gap by creating a structural, cellular and molecular atlas of the human and mouse lung. Methods Single cell RNA sequencing generated transcriptional profiles of 5500 cells obtained from two one-day old human lungs (born at gestational ages of 39 and 31 weeks) from the LungMAP Human Tissue Core Biorepository at the University of Rochester. Frozen single cell isolates were captured, and library preparation was completed on the Chromium 10X system. Data was analyzed in Seurat, and cellular annotation was performed using the ToppGene functional analysis tool. Single cell sequence data from 32000 postnatal day 1, 3, 7 and 10 mouse lung (n = 2 at each time point) cells generated by the LungMAP Research Center at Cincinnati Children’s Hospital and Medical Center, using Dropseq platform, was integrated with the human data. In situ hybridization was used to confirm the spatial location of cellular phenotypes. Results Transcriptional interrogation of donor newborn human lung cells identified distinct clusters representing multiple populations of epithelial, endothelial, fibroblasts, pericytes, smooth muscle, and immune cells and signature genes for each of these populations were identified. Computational integration of newborn human and postnatal mouse lung development cellular transcriptomes facilitated the identification of distinct cellular lineages among all the major cell types. Integration of the human and mouse cellular transcriptomes also demonstrated cell type-specific differences in developmental states of the newborn human lung cells. In particular, matrix fibroblasts could be separated into those representative of younger cells (n=393), or older cells (n=158). This is the first comprehensive molecular map of the cellular landscape of neonatal human lung, including biomarkers for cells at distinct states of development. Our results indicate that integrated single cell RNA profiling of human and mouse lung will help identify common and species-specific mechanisms of lung development and respiratory disease.
7
Paper
Citation5
0
Save
1

Guided construction of single cell reference for human and mouse lung

Minzhe Guo et al.Oct 24, 2023
+27
Y
M
M
ABSTRACT Accurate cell type identification is a key and rate-limiting step in single cell data analysis. Single cell references with comprehensive cell types, reproducible and functional validated cell identities, and common nomenclatures are much needed by the research community to optimize automated cell type annotation and facilitate data integration, sharing, and collaboration. In the present study, we developed a novel computational pipeline to utilize the LungMAP CellCards as a dictionary to consolidate single-cell transcriptomic datasets of 104 human lungs and 17 mouse lung samples and constructed “LungMAP CellRef” and “LungMAP CellRef Seed” for both normal human and mouse lungs. “CellRef Seed” has an equivalent prediction power and produces consistent cell annotation as does “CellRef” but improves computational efficiency and simplifies its utilization for fast automated cell type annotation and online visualization. This atlas set incorporates 48 human and 40 mouse well-defined lung cell types catalogued from diverse anatomic locations and developmental time points. Using independent datasets, we demonstrated the utility of our CellRefs for automated cell type annotation analysis of both normal and disease lungs. User-friendly web interfaces were developed to support easy access and maximal utilization of the LungMAP CellRefs. LungMAP CellRefs are freely available to the pulmonary research community through fast interactive web interfaces to facilitate hypothesis generation, research discovery, and identification of cell type alterations in disease conditions.
1
Citation4
0
Save
0

Pretreatment of aged mice with retinoic acid restores alveolar regeneration via upregulation of reciprocal PDGFRA signaling

Jason Gokey et al.May 31, 2024
+6
J
J
J
Abstract Objectives Idiopathic Pulmonary Fibrosis (IPF) primarily affects the aged population and is characterized by failure of alveolar regeneration leading to loss of alveolar type 1 cells (AT1). Aged mouse models of lung repair have demonstrated that regeneration fails with increased age. Mouse and rat lung repair models have shown retinoic acid (RA) treatment can restore alveolar regeneration. Herein we seek to determine the signaling mechanisms by which RA treatment prior to injury supports alveolar differentiation. Design Partial pneumonectomy (PNX) lung injury model and next generation sequencing of sorted cell populations are used to uncover molecular targets regulating alveolar repair. In-vitro organoids generated from Mouse or IPF patient epithelial cells co-cultured with young, aged, or RA pretreated murine mesenchyme are used to test potential targets. Main outcome measurements Known alveolar epithelial cell differentiation markers, including HOPX and AGER for AT1 cells are used to assess outcome of treatments. Results Gene expression analysis of sorted fibroblasts and epithelial cells isolated from lungs of young, aged, and RA treated aged mice predicted increased PDGFA signaling that coincided with regeneration and alveolar epithelial differentiation. Addition of PDGFA induced AT1 and AT2 alveolar differentiation in both mouse and human IPF lung organoids generated with aged fibroblasts and PDGFA monoclonal antibody blocked AT1 cell differentiation in organoids generated with young murine fibroblasts. Conclusions Our data support the concept that reciprocal PDGFA signaling activates regenerative fibroblasts that support alveolar epithelial cell differentiation and repair, providing a potential therapeutic strategy to influence the pathogenesis of IPF. Key Question Which epithelial-mesenchymal crosstalk pathways are activated by RA pretreatment of aged lungs that support realveolarization after partial pneumonectomy surgery? Bottom Line Increased PDGFA/PDGFRA signaling in aged lungs promotes regenerative activation of interstitial matrixfibroblast which is required for AT2 to AT1 differentiation and alveolar regeneration. Read On In-vitro and in-vivo analysis demonstrated that PDGFA signaling supports alveolar matrixfibroblast and AT1 epithelial cell differentiation, both necessary for alveolar regeneration in aged lungs.
2

Alpha-1 Antitrypsin Limits Neutrophil Extracellular Trap Disruption of Airway Epithelial Barrier Function

Kristin Hudock et al.Oct 24, 2023
+20
M
M
K
Abstract Neutrophil extracellular traps contribute to lung injury in cystic fibrosis and asthma, but the mechanisms are poorly understood. We sought to understand the impact of human NETs on barrier function in primary human bronchial epithelial and a human airway epithelial cell line. We demonstrate that NETs disrupt airway epithelial barrier function by decreasing transepithelial electrical resistance and increasing paracellular flux, partially by NET-induced airway cell apoptosis. NETs selectively impact the expression of tight junction genes claudins 4, 8 and 11. Bronchial epithelia exposed to NETs demonstrate visible gaps in E-cadherin staining, a decrease in full-length E-cadherin protein and the appearance of cleaved E-cadherin peptides. Pretreatment of NETs with alpha-1 antitrypsin (A1AT) inhibits NET serine protease activity, limits E-cadherin cleavage, decreases bronchial cell apoptosis and preserves epithelial integrity. In conclusion, NETs disrupt human airway epithelial barrier function through bronchial cell death and degradation of E-cadherin, which are limited by exogenous A1AT.
0

Lung at a Glance: an integrative web toolset of lung ontology, imaging and single cell omics

Yina Du et al.Jun 6, 2024
+4
J
W
Y
ABSTRACT Recent advances in single-cell omics and high-resolution imaging have provided unanticipated data resources for the elucidation of genes underlying the complex biological processes critical for organ formation and function. However, processing and integrating large amounts of single-cell omics and imaging data presents a major challenge for most researchers. There is a critical need for ready-to-use computational tools for data/knowledge integration and visualization. Here we present “Lung-at-a-glance”, an easy-to-use web toolset for visualizing and interoperating complex omics and imaging data, providing an interactive web interface to bridge lung anatomic ontology classifications to lung histology and immunofluorescence confocal images, and cell-type-specific gene expression. “Lung-at-a-glance” contains three interactive components: 1) “Region at a glance”, 2) “Cell at a glance” and 3) “Gene at a glance”. “Lung-at-a-glance” and other newly developed web tools for lung-related data query, integration and visualization are publicly available on LGEA web portal v3 https://research.cchmc.org/pbge/lunggens/mainportal.html .
0
Citation1
0
Save
1

Inflammatory blockade prevents injury to the developing pulmonary gas exchange surface in preterm primates

Andrea Tóth et al.Oct 24, 2023
+30
P
S
A
Abstract Malformations of or injuries to the developing lung are associated with perinatal morbidity and mortality with lifelong consequences for subsequent pulmonary health. One fetal exposure linked with poor health outcomes is chorioamnionitis, which impacts up to 25-40% of preterm births. Severe chorioamnionitis with prematurity is associated with significantly increased risk of pulmonary disease and secondary infections in childhood, suggesting that fetal inflammation may significantly alter developmental ontogeny of the lung. To test this hypothesis, we used intra-amniotic lipopolysaccharide (LPS, endotoxin) to generate experimental chorioamnionitis in prenatal Rhesus macaque ( Macaca mulatta ), a model which shares critical structural and temporal aspects of human lung development. Inflammatory injury directly disrupts the developing gas exchange surface of the primate lung, with extensive damage to alveolar structure, particularly the close association and coordinated differentiation of alveolar type 1 pneumocytes and specialized alveolar capillary endothelium. Single cell RNA sequencing analysis defined a multicellular alveolar signaling niche driving alveologenesis which was extensively disrupted by perinatal inflammation, leading to loss of gas exchange surface and alveolar simplification similar to that found in chronic lung disease of newborns. Blockade of IL1β and TNFα ameliorated endotoxin-induced inflammatory lung injury by blunting stromal response to inflammation and modulating innate immune activation in myeloid cells, restoring structural integrity and key signaling networks in the developing alveolus. These data provide new insight into the pathophysiology of developmental lung injury and suggest that modulating inflammation is a promising therapeutic approach to prevent fetal consequences of chorioamnionitis.
-1

An integrated cell atlas of the human lung in health and disease

Lisa Sikkema et al.Oct 11, 2023
+71
L
D
L
ABSTRACT Organ- and body-scale cell atlases have the potential to transform our understanding of human biology. To capture the variability present in the population, these atlases must include diverse demographics such as age and ethnicity from both healthy and diseased individuals. The growth in both size and number of single-cell datasets, combined with recent advances in computational techniques, for the first time makes it possible to generate such comprehensive large-scale atlases through integration of multiple datasets. Here, we present the integrated Human Lung Cell Atlas (HLCA) combining 46 datasets of the human respiratory system into a single atlas spanning over 2.2 million cells from 444 individuals across health and disease. The HLCA contains a consensus re-annotation of published and newly generated datasets, resolving under- or misannotation of 59% of cells in the original datasets. The HLCA enables recovery of rare cell types, provides consensus marker genes for each cell type, and uncovers gene modules associated with demographic covariates and anatomical location within the respiratory system. To facilitate the use of the HLCA as a reference for single-cell lung research and allow rapid analysis of new data, we provide an interactive web portal to project datasets onto the HLCA. Finally, we demonstrate the value of the HLCA reference for interpreting disease-associated changes. Thus, the HLCA outlines a roadmap for the development and use of organ-scale cell atlases within the Human Cell Atlas.
1

Balance between protective and pathogenic immune responses to pneumonia in the neonatal lung enforced by gut microbiota

Joseph Stevens et al.Oct 24, 2023
+13
M
S
J
Abstract While modern clinical practices like cesarean sections and perinatal antibiotics have improved infant survival, treatment with broad-spectrum antibiotics alters intestinal microbiota and causes dysbiosis. Infants exposed to perinatal antibiotics have an increased likelihood of life-threatening infections, including pneumonia. Here, we investigated how gut microbiota sculpt pulmonary immune responses, promoting recovery and resolution of infection in newborn rhesus macaques. Early-life antibiotic exposure, mirroring current clinical practices, interrupted the maturation of intestinal commensal bacteria and disrupted the developmental trajectory of the pulmonary immune system as assessed by single-cell proteomic and transcriptomic analyses of the pulmonary immune response. Early-life antibiotic exposure rendered newborn macaques susceptible to bacterial pneumonia, mediated by profound changes in neutrophil senescence, inflammatory signaling, and macrophage dysfunction. Pathogenic reprogramming of pulmonary immunity was reflected by a hyperinflammatory signature in all pulmonary immune cell subsets. Distinct patterns of immunoparalysis, including dysregulated antigen presentation in alveolar macrophages, impaired costimulatory function in T helper cells, and dysfunctional cytotoxic responses in natural killer (NK) cells, were coupled with a global loss of tissue-protective, homeostatic pathways in lungs of dysbiotic newborns. Fecal microbiota transfer corrected the broad immune maladaptations and protected against severe pneumonia. These data demonstrate the importance of intestinal microbiota in programming pulmonary immunity. Gut microbiota promote balance between pathways driving tissue repair and inflammatory responses, thereby leading to clinical recovery from infection in infants. One sentence summary Gut microbiota promote clinical recovery by reinforcing the balance between regenerative pathways driving tissue homeostasis and inflammatory responses limiting pathogens in infected neonatal lungs.
0

mTOR dysregulation induces IL6 and paracrine AT2 cell senescence impeding lung repair in lymphangioleiomyomatosis

Roya Babaei‐Jadidi et al.May 28, 2024
+8
Y
D
R
Lymphangioleiomyomatosis (LAM) is a rare disease which causes lung cysts and respiratory failure. TSC2 deficient LAM cells with dysregulated mTOR signalling form nodules with fibroblasts causing lung injury. We examined if mTOR dysregulation could induce senescence and impair responses to lung injury. Senescence markers p21 and p16 were increased in LAM lungs and co-localised with alveolar type 2 cells. The SenMayo senescence gene panel was upregulated in LAM alveolar type 2 cells with senescence supressed by mTOR inhibition in patients. LAM cell / fibroblast spheroid cultures induced senescence markers in alveolar type 2 cell organoids, altered their growth and delayed epithelial scratch wound repair. Upstream regulator analysis predicted alveolar type 2 cell IL6 receptor activation. IL6 was produced by LAM cells, induced p16 and p21 in alveolar type 2 cells, inhibited epithelial wound resolution and was overexpressed in LAM patient serum where it was related to lung function. Wound repair in the presence of TSC2 null LAM cell / fibroblast spheroids was enhanced by the IL6 receptor antagonist Tocilizumab. Our findings show TSC2 loss induces senescence and IL6 production which are associated with impaired lung repair. Targeting IL6 signalling in parallel with mTOR inhibition, may reduce lung damage in LAM.
Load More