PH
Peter Halfmann
Author with expertise in Coronavirus Disease 2019 Research
University of Wisconsin–Madison, Tokyo Medical University, The University of Tokyo
+ 3 more
Achievements
Open Access Advocate
Cited Author
Key Stats
Upvotes received:
0
Publications:
18
(94% Open Access)
Cited by:
214
h-index:
50
/
i10-index:
104
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
544

SARS-CoV-2 D614G Variant Exhibits Enhanced Replication ex vivo and Earlier Transmission in vivo

Yixuan Hou et al.Oct 11, 2023
+17
P
S
Y
The D614G substitution in the S protein is most prevalent SARS-CoV-2 strain circulating globally, but its effects in viral pathogenesis and transmission remain unclear. We engineered SARS-CoV-2 variants harboring the D614G substitution with or without nanoluciferase. The D614G variant replicates more efficiency in primary human proximal airway epithelial cells and is more fit than wildtype (WT) virus in competition studies. With similar morphology to the WT virion, the D614G virus is also more sensitive to SARS-CoV-2 neutralizing antibodies. Infection of human ACE2 transgenic mice and Syrian hamsters with the WT or D614G viruses produced similar titers in respiratory tissue and pulmonary disease. However, the D614G variant exhibited significantly faster droplet transmission between hamsters than the WT virus, early after infection. Our study demonstrated the SARS-CoV2 D614G substitution enhances infectivity, replication fitness, and early transmission.
544
Paper
Citation47
0
Save
2

Hypergraph models of biological networks to identify genes critical to pathogenic viral response

Song Feng et al.Apr 15, 2024
+25
B
E
S
Abstract Background Representing biological networks as graphs is a powerful approach to reveal underlying patterns, signatures, and critical components from high-throughput biomolecular data. However, graphs do not natively capture the multi-way relationships present among genes and proteins in biological systems. Hypergraphs are generalizations of graphs that naturally model multi-way relationships and have shown promise in modeling systems such as protein complexes and metabolic reactions. In this paper we seek to understand how hypergraphs can more faithfully identify, and potentially predict, important genes based on complex relationships inferred from genomic expression data sets. Results We compiled a novel data set of transcriptional host response to pathogenic viral infections and formulated relationships between genes as a hypergraph where hyperedges represent significantly perturbed genes, and vertices represent individual biological samples with specific experimental conditions. We find that hypergraph betweenness centrality is a superior method for identification of genes important to viral response when compared with graph centrality. Conclusions Our results demonstrate the utility of using hypergraphs to represent complex biological systems and highlight central important responses in common to a variety of highly pathogenic viruses.
2
Citation47
1
Save
1k

Reduced Pathogenicity of the SARS-CoV-2 Omicron Variant in Hamsters

Katherine McMahan et al.Oct 11, 2023
+11
L
V
K
The SARS-CoV-2 Omicron (B.1.1.529) variant has proven highly transmissible and has outcompeted the Delta variant in many regions of the world 1 . Early reports have also suggested that Omicron may result in less severe clinical disease in humans. Here we show that Omicron is less pathogenic than prior SARS-CoV-2 variants in Syrian golden hamsters. Infection of hamsters with the SARS-CoV-2 WA1/2020, Alpha, Beta, or Delta strains led to 4-10% weight loss by day 4 and 10-17% weight loss by day 6, as expected 2,3 . In contrast, infection of hamsters with two different Omicron challenge stocks did not result in any detectable weight loss, even at high challenge doses. Omicron infection still led to substantial viral replication in both the upper and lower respiratory tracts and pulmonary pathology, but with a trend towards higher viral loads in nasal turbinates and lower viral loads in lung parenchyma compared with WA1/2020 infection. These data suggest that the SARS-CoV-2 Omicron variant may result in more robust upper respiratory tract infection but less severe lower respiratory tract clinical disease compared with prior SARS-CoV-2 variants.
139

An infectious SARS-CoV-2 B.1.1.529 Omicron virus escapes neutralization by several therapeutic monoclonal antibodies

Laura VanBlargan et al.Oct 23, 2023
+7
P
J
L
ABSTRACT Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has caused the global COVID-19 pandemic resulting in millions of deaths worldwide. Despite the development and deployment of highly effective antibody and vaccine countermeasures, rapidly-spreading SARS-CoV-2 variants with mutations at key antigenic sites in the spike protein jeopardize their efficacy. Indeed, the recent emergence of the highly-transmissible B.1.1.529 Omicron variant is especially concerning because of the number of mutations, deletions, and insertions in the spike protein. Here, using a panel of anti-receptor binding domain (RBD) monoclonal antibodies (mAbs) corresponding to those with emergency use authorization (EUA) or in advanced clinical development by Vir Biotechnology (S309, the parent mAbs of VIR-7381), AstraZeneca (COV2-2196 and COV2-2130, the parent mAbs of AZD8895 and AZD1061), Regeneron (REGN10933 and REGN10987), Lilly (LY-CoV555 and LY-CoV016), and Celltrion (CT-P59), we report the impact on neutralization of a prevailing, infectious B.1.1.529 Omicron isolate compared to a historical WA1/2020 D614G strain. Several highly neutralizing mAbs (LY-CoV555, LY-CoV016, REGN10933, REGN10987, and CT-P59) completely lost inhibitory activity against B.1.1.529 virus in both Vero-TMPRSS2 and Vero-hACE2-TMPRSS2 cells, whereas others were reduced (∼12-fold decrease, COV2-2196 and COV2-2130 combination) or minimally affected (S309). Our results suggest that several, but not all, of the antibody products in clinical use will lose efficacy against the B.1.1.529 Omicron variant and related strains.
139
Citation24
0
Save
137

Resilience of S309 and AZD7442 monoclonal antibody treatments against infection by SARS-CoV-2 Omicron lineage strains

James Case et al.Oct 24, 2023
+19
J
S
J
ABSTRACT Omicron variant strains encode large numbers of changes in the spike protein compared to historical SARS-CoV-2 isolates. Although in vitro studies have suggested that several monoclonal antibody therapies lose neutralizing activity against Omicron variants 1-4 , the effects in vivo remain largely unknown. Here, we report on the protective efficacy against three SARS-CoV-2 Omicron lineage strains (BA.1, BA.1.1, and BA.2) of two monoclonal antibody therapeutics (S309 [Vir Biotechnology] monotherapy and AZD7442 [AstraZeneca] combination), which correspond to ones used to treat or prevent SARS-CoV-2 infections in humans. Despite losses in neutralization potency in cell culture, S309 or AZD7442 treatments reduced BA.1, BA.1.1, and BA.2 lung infection in susceptible mice that express human ACE2 (K18-hACE2). Correlation analyses between in vitro neutralizing activity and reductions in viral burden in K18-hACE2 or human Fcγ R transgenic mice suggest that S309 and AZD7442 have different mechanisms of protection against Omicron variants, with S309 utilizing Fc effector function interactions and AZD7442 acting principally by direct neutralization. Our data in mice demonstrate the resilience of S309 and AZD7442 mAbs against emerging SARS-CoV-2 variant strains and provide insight into the relationship between loss of antibody neutralization potency and retained protection in vivo .
137
Citation15
0
Save
32

SARS-CoV-2 infection severity is linked to superior humoral immunity against the spike

Jenna Guthmiller et al.Oct 24, 2023
+22
J
O
J
ABSTRACT Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is currently causing a global pandemic. The antigen specificity and kinetics of the antibody response mounted against this novel virus are not understood in detail. Here, we report that subjects with a more severe SARS-CoV-2 infection exhibit a larger antibody response against the spike and nucleocapsid protein and epitope spreading to subdominant viral antigens, such as open reading frame 8 and non-structural proteins. Subjects with a greater antibody response mounted a larger memory B cell response against the spike, but not the nucleocapsid protein. Additionally, we revealed that antibodies against the spike are still capable of binding the D614G spike mutant and cross-react with the SARS-CoV-1 receptor binding domain. Together, this study reveals that subjects with a more severe SARS-CoV-2 infection exhibit a greater overall antibody response to the spike and nucleocapsid protein and a larger memory B cell response against the spike.
32
Citation11
0
Save
1

Durability of immune responses to the BNT162b2 mRNA vaccine

Mehul Suthar et al.Oct 24, 2023
+16
M
P
M
Abstract The development of the highly efficacious mRNA vaccines in less than a year since the emergence of SARS-CoV-2 represents a landmark in vaccinology. However, reports of waning vaccine efficacy, coupled with the emergence of variants of concern that are resistant to antibody neutralization, have raised concerns about the potential lack of durability of immunity to vaccination. We recently reported findings from a comprehensive analysis of innate and adaptive immune responses in 56 healthy volunteers who received two doses of the BNT162b2 vaccination. Here, we analyzed antibody responses to the homologous Wu strain as well as several variants of concern, including the emerging Mu (B.1.621) variant, and T cell responses in a subset of these volunteers at six months (day 210 post-primary vaccination) after the second dose. Our data demonstrate a substantial waning of antibody responses and T cell immunity to SARS-CoV-2 and its variants, at 6 months following the second immunization with the BNT162b2 vaccine. Notably, a significant proportion of vaccinees have neutralizing titers below the detection limit, and suggest a 3 rd booster immunization might be warranted to enhance the antibody titers and T cell responses.
1
Citation11
0
Save
49

Nasally-delivered interferon-λ protects mice against upper and lower respiratory tract infection of SARS-CoV-2 variants including Omicron

Zhenlu Chong et al.Oct 24, 2023
+4
P
C
Z
SUMMARY Although vaccines and monoclonal antibody countermeasures have reduced the morbidity and mortality associated with SARS-CoV-2 infection, variants with constellations of mutations in the spike gene threaten their efficacy. Accordingly, antiviral interventions that are resistant to further virus evolution are needed. The host-derived cytokine IFN-λ has been proposed as a possible treatment based on correlative studies in human COVID-19 patients. Here, we show IFN-λ protects against SARS-CoV-2 B.1.351 (Beta) and B.1.1.529 (Omicron)variants in three strains of conventional and human ACE2 transgenic mice. Prophylaxis or therapy with nasally-delivered IFN-λ2 limited infection of historical or variant (B.1.351 and B.1.1.529) SARS-CoV-2 strains in the upper and lower respiratory tracts without causing excessive inflammation. In the lung, IFN-λ was produced preferentially in epithelial cells and acted on radio-resistant cells to protect against of SARS-CoV-2 infection. Thus, inhaled IFN-λ may have promise as a treatment for evolving SARS-CoV-2 variants that develop resistance to antibody-based countermeasures.
49
Citation3
0
Save
26

Site of vulnerability on SARS-CoV-2 spike induces broadly protective antibody to antigenically distinct omicron SARS-CoV-2 subvariants

Siriruk Changrob et al.Oct 24, 2023
+19
H
P
S
Summary The rapid evolution of SARS-CoV-2 Omicron variants has emphasized the need to identify antibodies with broad neutralizing capabilities to inform future monoclonal therapies and vaccination strategies. Herein, we identify S728-1157, a broadly neutralizing antibody (bnAb) targeting the receptor-binding site (RBS) and derived from an individual previously infected with SARS-CoV-2 prior to the spread of variants of concern (VOCs). S728-1157 demonstrates broad cross-neutralization of all dominant variants including D614G, Beta, Delta, Kappa, Mu, and Omicron (BA.1/BA.2/BA.2.75/BA.4/BA.5/BL.1). Furthermore, it protected hamsters against in vivo challenges with wildtype, Delta, and BA.1 viruses. Structural analysis reveals that this antibody targets a class 1 epitope via multiple hydrophobic and polar interactions with its CDR-H3, in addition to common class 1 motifs in CDR-H1/CDR-H2. Importantly, this epitope is more readily accessible in the open and prefusion state, or in the hexaproline (6P)-stabilized spike constructs, as compared to diproline (2P) constructs. Overall, S728-1157 demonstrates broad therapeutic potential, and may inform target-driven vaccine design against future SARS-CoV-2 variants.
26
Paper
Citation2
0
Save
60

Highly efficient SARS-CoV-2 infection of human cardiomyocytes: spike protein-mediated cell fusion and its inhibition

Chanakha Navaratnarajah et al.Oct 24, 2023
+8
P
D
C
Abstract Severe cardiovascular complications can occur in coronavirus disease of 2019 (COVID-19) patients. Cardiac damage is attributed mostly to a bystander effect: the aberrant host response to acute respiratory infection. However, direct infection of cardiac tissue by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) also occurs. We examined here the cardiac tropism of SARS-CoV-2 in human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CM) that beat spontaneously. These cardiomyocytes express the angiotensin I converting-enzyme 2 (ACE2) receptor and a subset of the proteases that mediate spike protein cleavage in the lungs, but not transmembrane protease serine 2 (TMPRSS2). Nevertheless, SARS-CoV-2 infection was productive: viral transcripts accounted for about 88% of total mRNA. In the cytoplasm of infected hiPSC-CM, smooth walled exocytic vesicles contained numerous 65-90 nm particles with typical ribonucleocapsid structures, and virus-like particles with knob-like spikes covered the cell surface. To better understand the mechanisms of SARS-CoV-2 spread in hiPSC-CM we engineered an expression vector coding for the spike protein with a monomeric emerald-green fluorescent protein fused to its cytoplasmic tail (S-mEm). Proteolytic processing of S-mEm and the parental spike were equivalent. Live cell imaging tracked spread of S-mEm signal from cell to cell and documented formation of syncytia. A cell-permeable, peptide-based molecule that blocks the catalytic site of furin abolished cell fusion. A spike mutant with the single amino acid change R682S that inactivates the furin cleavage site was fusion inactive. Thus, SARS-CoV-2 can replicate efficiently in hiPSC-CM and furin activation of its spike protein is required for fusion-based cytopathology. This hiPSC-CM platform provides an opportunity for target-based drug discovery in cardiac COVID-19. Author Summary It is unclear whether the cardiac complications frequently observed in COVID-19 patients are due exclusively to systemic inflammation and thrombosis. Viral replication has occasionally been confirmed in cardiac tissue, but rigorous analyses are restricted to rare autopsy materials. Moreover, there are few animal models to study cardiovascular complications of coronavirus infections. To overcome these limitations, we developed an in vitro model of SARS-CoV-2 spread in induced pluripotent stem cell-derived cardiomyocytes. In these cells, infection is highly productive: viral transcription levels exceed those documented in permissive transformed cell lines. To better understand the mechanisms of SARS-CoV-2 spread we expressed a fluorescent version of its spike protein that allowed to characterize a fusion-based cytopathic effect. A mutant of the spike protein with a single amino acid mutation in the furin cleavage site lost cytopathic function. The spike protein of the Middle East Respiratory Syndrome (MERS) coronavirus drove cardiomyocyte fusion with slow kinetics, whereas the spike proteins of SARS-CoV and the respiratory coronavirus 229E were inactive. These fusion activities correlated with the level of cardiovascular complications observed in infections with the respective viruses. These data indicate that SARS-CoV-2 has the potential to cause cardiac damage by fusing cardiomyocytes.
60
Paper
Citation1
0
Save
Load More