WW
Wujie Wang
Author with expertise in Protein Structure Prediction and Analysis
Achievements
Cited Author
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
3
(67% Open Access)
Cited by:
105
h-index:
12
/
i10-index:
19
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Illuminating protein space with a programmable generative model

John Ingraham et al.Nov 15, 2023
Three billion years of evolution has produced a tremendous diversity of protein molecules1, but the full potential of proteins is likely to be much greater. Accessing this potential has been challenging for both computation and experiments because the space of possible protein molecules is much larger than the space of those likely to have functions. Here we introduce Chroma, a generative model for proteins and protein complexes that can directly sample novel protein structures and sequences, and that can be conditioned to steer the generative process towards desired properties and functions. To enable this, we introduce a diffusion process that respects the conformational statistics of polymer ensembles, an efficient neural architecture for molecular systems that enables long-range reasoning with sub-quadratic scaling, layers for efficiently synthesizing three-dimensional structures of proteins from predicted inter-residue geometries and a general low-temperature sampling algorithm for diffusion models. Chroma achieves protein design as Bayesian inference under external constraints, which can involve symmetries, substructure, shape, semantics and even natural-language prompts. The experimental characterization of 310 proteins shows that sampling from Chroma results in proteins that are highly expressed, fold and have favourable biophysical properties. The crystal structures of two designed proteins exhibit atomistic agreement with Chroma samples (a backbone root-mean-square deviation of around 1.0 Å). With this unified approach to protein design, we hope to accelerate the programming of protein matter to benefit human health, materials science and synthetic biology.
171

Illuminating protein space with a programmable generative model

John Ingraham et al.Dec 2, 2022
Abstract Three billion years of evolution have produced a tremendous diversity of protein molecules, and yet the full potential of this molecular class is likely far greater. Accessing this potential has been challenging for computation and experiments because the space of possible protein molecules is much larger than the space of those likely to host function. Here we introduce Chroma, a generative model for proteins and protein complexes that can directly sample novel protein structures and sequences and that can be conditioned to steer the generative process towards desired properties and functions. To enable this, we introduce a diffusion process that respects the conformational statistics of polymer ensembles, an efficient neural architecture for molecular systems based on random graph neural networks that enables long-range reasoning with sub-quadratic scaling, equivariant layers for efficiently synthesizing 3D structures of proteins from predicted inter-residue geometries, and a general low-temperature sampling algorithm for diffusion models. We suggest that Chroma can effectively realize protein design as Bayesian inference under external constraints, which can involve symmetries, substructure, shape, semantics, and even natural language prompts. With this unified approach, we hope to accelerate the prospect of programming protein matter for human health, materials science, and synthetic biology.