SL
Shuangjia Lu
Author with expertise in Standards and Guidelines for Genetic Variant Interpretation
Achievements
Cited Author
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
6
(83% Open Access)
Cited by:
1,912
h-index:
9
/
i10-index:
9
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Landscape and Dynamics of Single Immune Cells in Hepatocellular Carcinoma

Qiming Zhang et al.Oct 1, 2019
+22
N
Y
Q
The immune microenvironment of hepatocellular carcinoma (HCC) is poorly characterized. Combining two single-cell RNA sequencing technologies, we produced transcriptomes of CD45+ immune cells for HCC patients from five immune-relevant sites: tumor, adjacent liver, hepatic lymph node (LN), blood, and ascites. A cluster of LAMP3+ dendritic cells (DCs) appeared to be the mature form of conventional DCs and possessed the potential to migrate from tumors to LNs. LAMP3+ DCs also expressed diverse immune-relevant ligands and exhibited potential to regulate multiple subtypes of lymphocytes. Of the macrophages in tumors that exhibited distinct transcriptional states, tumor-associated macrophages (TAMs) were associated with poor prognosis, and we established the inflammatory role of SLC40A1 and GPNMB in these cells. Further, myeloid and lymphoid cells in ascites were predominantly linked to tumor and blood origins, respectively. The dynamic properties of diverse CD45+ cell types revealed by this study add new dimensions to the immune landscape of HCC.
0
Citation1,059
0
Save
0

Proteogenomic and metabolomic characterization of human glioblastoma

Liang-Bo Wang et al.Feb 11, 2021
+97
M
A
L
Glioblastoma (GBM) is the most aggressive nervous system cancer. Understanding its molecular pathogenesis is crucial to improving diagnosis and treatment. Integrated analysis of genomic, proteomic, post-translational modification and metabolomic data on 99 treatment-naive GBMs provides insights to GBM biology. We identify key phosphorylation events (e.g., phosphorylated PTPN11 and PLCG1) as potential switches mediating oncogenic pathway activation, as well as potential targets for EGFR-, TP53-, and RB1-altered tumors. Immune subtypes with distinct immune cell types are discovered using bulk omics methodologies, validated by snRNA-seq, and correlated with specific expression and histone acetylation patterns. Histone H2B acetylation in classical-like and immune-low GBM is driven largely by BRDs, CREBBP, and EP300. Integrated metabolomic and proteomic data identify specific lipid distributions across subtypes and distinct global metabolic changes in IDH-mutated tumors. This work highlights biological relationships that could contribute to stratification of GBM patients for more effective treatment.
0
Citation411
0
Save
1

A draft human pangenome reference

Wen‐Wei Liao et al.May 10, 2023
+97
J
M
W
Abstract Here the Human Pangenome Reference Consortium presents a first draft of the human pangenome reference. The pangenome contains 47 phased, diploid assemblies from a cohort of genetically diverse individuals 1 . These assemblies cover more than 99% of the expected sequence in each genome and are more than 99% accurate at the structural and base pair levels. Based on alignments of the assemblies, we generate a draft pangenome that captures known variants and haplotypes and reveals new alleles at structurally complex loci. We also add 119 million base pairs of euchromatic polymorphic sequences and 1,115 gene duplications relative to the existing reference GRCh38. Roughly 90 million of the additional base pairs are derived from structural variation. Using our draft pangenome to analyse short-read data reduced small variant discovery errors by 34% and increased the number of structural variants detected per haplotype by 104% compared with GRCh38-based workflows, which enabled the typing of the vast majority of structural variant alleles per sample.
1
Citation381
0
Save
1

Pangenome graph construction from genome alignments with Minigraph-Cactus

Glenn Hickey et al.May 10, 2023
+96
J
J
G
Pangenome references address biases of reference genomes by storing a representative set of diverse haplotypes and their alignment, usually as a graph. Alternate alleles determined by variant callers can be used to construct pangenome graphs, but advances in long-read sequencing are leading to widely available, high-quality phased assemblies. Constructing a pangenome graph directly from assemblies, as opposed to variant calls, leverages the graph’s ability to represent variation at different scales. Here we present the Minigraph-Cactus pangenome pipeline, which creates pangenomes directly from whole-genome alignments, and demonstrate its ability to scale to 90 human haplotypes from the Human Pangenome Reference Consortium. The method builds graphs containing all forms of genetic variation while allowing use of current mapping and genotyping tools. We measure the effect of the quality and completeness of reference genomes used for analysis within the pangenomes and show that using the CHM13 reference from the Telomere-to-Telomere Consortium improves the accuracy of our methods. We also demonstrate construction of a Drosophila melanogaster pangenome. Constructing genome graphs directly from genome assemblies overcomes single-reference bias.
1
Citation61
0
Save
1

Association of Structural Variation with Cardiometabolic Traits in Finns

Yong Cheng et al.Dec 13, 2020
+23
I
H
Y
The contribution of genome structural variation (SV) to quantitative traits associated with cardiometabolic diseases remains largely unknown. Here, we present the results of a study examining genetic association between SVs and cardiometabolic traits in the Finnish population. We used sensitive methods to identify and genotype 129,166 high-confidence SVs from deep whole genome sequencing (WGS) data of 4,848 individuals. We tested the 64,572 common and low frequency SVs for association with 116 quantitative traits, and tested candidate associations using exome sequencing and array genotype data from an additional 15,205 individuals. We discovered 31 genome-wide significant associations at 15 loci, including two novel loci at which SVs have strong phenotypic effects: (1) a deletion of the ALB gene promoter that is greatly enriched in the Finnish population and causes decreased serum albumin level in carriers (p=1.47x10-54), and is also associated with increased levels of total cholesterol (p=1.22x10-28) and 14 additional cholesterol-related traits, and (2) a multiallelic copy number variant (CNV) at PDPR that is strongly associated with pyruvate (p=4.81x10-21) and alanine (p=6.14x10-12) levels and resides within a structurally complex genomic region that has accumulated many rearrangements over evolutionary time. We also confirmed six previously reported associations, including five led by stronger signals in single nucleotide variants (SNVs), and one linking recurrent HP gene deletion and cholesterol levels (p=6.24x10-10), which was also found to be strongly associated with increased glycoprotein level (p=3.53x10-35). Our study confirms that integrating SVs in trait-mapping studies will expand our knowledge of genetic factors underlying disease risk.
361

A Draft Human Pangenome Reference

Wen‐Wei Liao et al.Jul 9, 2022
+53
T
A
W
Abstract The Human Pangenome Reference Consortium (HPRC) presents a first draft human pangenome reference. The pangenome contains 47 phased, diploid assemblies from a cohort of genetically diverse individuals. These assemblies cover more than 99% of the expected sequence and are more than 99% accurate at the structural and base-pair levels. Based on alignments of the assemblies, we generated a draft pangenome that captures known variants and haplotypes, reveals novel alleles at structurally complex loci, and adds 119 million base pairs of euchromatic polymorphic sequence and 1,529 gene duplications relative to the existing reference, GRCh38. Roughly 90 million of the additional base pairs derive from structural variation. Using our draft pangenome to analyze short-read data reduces errors when discovering small variants by 34% and boosts the detected structural variants per haplotype by 104% compared to GRCh38-based workflows, and by 34% compared to using previous diversity sets of genome assemblies.