CM
Charles Markello
Author with expertise in RNA Sequencing Data Analysis
Achievements
Open Access Advocate
Cited Author
Key Stats
Upvotes received:
0
Publications:
8
(100% Open Access)
Cited by:
675
h-index:
12
/
i10-index:
13
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
1

Pangenome graph construction from genome alignments with Minigraph-Cactus

Glenn Hickey et al.May 10, 2023
Pangenome references address biases of reference genomes by storing a representative set of diverse haplotypes and their alignment, usually as a graph. Alternate alleles determined by variant callers can be used to construct pangenome graphs, but advances in long-read sequencing are leading to widely available, high-quality phased assemblies. Constructing a pangenome graph directly from assemblies, as opposed to variant calls, leverages the graph’s ability to represent variation at different scales. Here we present the Minigraph-Cactus pangenome pipeline, which creates pangenomes directly from whole-genome alignments, and demonstrate its ability to scale to 90 human haplotypes from the Human Pangenome Reference Consortium. The method builds graphs containing all forms of genetic variation while allowing use of current mapping and genotyping tools. We measure the effect of the quality and completeness of reference genomes used for analysis within the pangenomes and show that using the CHM13 reference from the Telomere-to-Telomere Consortium improves the accuracy of our methods. We also demonstrate construction of a Drosophila melanogaster pangenome. Constructing genome graphs directly from genome assemblies overcomes single-reference bias.
1
Citation61
0
Save
10

A Complete Pedigree-Based Graph Workflow for Rare Candidate Variant Analysis

Charles Markello et al.Nov 25, 2021
Abstract Methods that use a linear genome reference for genome sequencing data analysis are reference biased. In the field of clinical genetics for rare diseases, a resulting reduction in genotyping accuracy in some regions has likely prevented the resolution of some cases. Pangenome graphs embed population variation into a reference structure. While pangenome graphs have helped to reduce reference mapping bias, further performance improvements are possible. We introduce VG-Pedigree, a pedigree-aware workflow based on the pangenome-mapping tool of Giraffe (Sirén et al. 2021) and the variant-calling tool DeepTrio (Kolesnikov et al. 2021) using a specially-trained model for Giraffe-based alignments. We demonstrate mapping and variant calling improvements in both single-nucleotide variants (SNVs) and insertion and deletion (INDEL) variants over those produced by alignments created using BWA-MEM to a linear-reference and Giraffe mapping to a pangenome graph containing data from the 1000 Genomes Project. We have also adapted and upgraded the deleterious-variant (DV) detecting methods and programs of Gu et al. into a streamlined workflow (Gu et al. 2019). We used these workflows in combination to detect small lists of candidate DVs among 15 family quartets and quintets of the Undiagnosed Diseases Program (UDP). All candidate DVs that were previously diagnosed using the mendelian models covered by the previously published Gu et al. methods were recapitulated by these workflows. The results of these experiments indicate a slightly greater absolute count of DVs are detected in the proband population than in their matched unaffected siblings.
10
Citation1
0
Save
113

Benchmarking challenging small variants with linked and long reads

Justin Wagner et al.Jul 25, 2020
Summary Genome in a Bottle (GIAB) benchmarks have been widely used to help validate clinical sequencing pipelines and develop new variant calling and sequencing methods. Here, we use accurate linked reads and long reads to expand the prior benchmarks in 7 samples to include difficult-to-map regions and segmental duplications that are not readily accessible to short reads. Our new benchmark adds more than 300,000 SNVs, 50,000 indels, and 16 % new exonic variants, many in challenging, clinically relevant genes not previously covered (e.g., PMS2 ). For HG002, we include 92% of the autosomal GRCh38 assembly, while excluding problematic regions for benchmarking small variants (e.g., copy number variants and reference errors) that should not have been in the previous version, which included 85% of GRCh38. By including difficult-to-map regions, this benchmark identifies eight times more false negatives in a short read variant call set relative to our previous benchmark.We have demonstrated the utility of this benchmark to reliably identify false positives and false negatives across technologies in more challenging regions, which enables continued technology and bioinformatics development.