BL
Boaz Levi
Author with expertise in Comprehensive Integration of Single-Cell Transcriptomic Data
Allen Institute for Brain Science, Allen Institute, Seattle University
+ 7 more
Achievements
Cited Author
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
23
(70% Open Access)
Cited by:
122
h-index:
30
/
i10-index:
46
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

A high-resolution transcriptomic and spatial atlas of cell types in the whole mouse brain

Zizhen Yao et al.Mar 9, 2024
+98
M
C
Z
The mammalian brain consists of millions to billions of cells that are organized into many cell types with specific spatial distribution patterns and structural and functional properties1-3. Here we report a comprehensive and high-resolution transcriptomic and spatial cell-type atlas for the whole adult mouse brain. The cell-type atlas was created by combining a single-cell RNA-sequencing (scRNA-seq) dataset of around 7 million cells profiled (approximately 4.0 million cells passing quality control), and a spatial transcriptomic dataset of approximately 4.3 million cells using multiplexed error-robust fluorescence in situ hybridization (MERFISH). The atlas is hierarchically organized into 4 nested levels of classification: 34 classes, 338 subclasses, 1,201 supertypes and 5,322 clusters. We present an online platform, Allen Brain Cell Atlas, to visualize the mouse whole-brain cell-type atlas along with the single-cell RNA-sequencing and MERFISH datasets. We systematically analysed the neuronal and non-neuronal cell types across the brain and identified a high degree of correspondence between transcriptomic identity and spatial specificity for each cell type. The results reveal unique features of cell-type organization in different brain regions-in particular, a dichotomy between the dorsal and ventral parts of the brain. The dorsal part contains relatively fewer yet highly divergent neuronal types, whereas the ventral part contains more numerous neuronal types that are more closely related to each other. Our study also uncovered extraordinary diversity and heterogeneity in neurotransmitter and neuropeptide expression and co-expression patterns in different cell types. Finally, we found that transcription factors are major determinants of cell-type classification and identified a combinatorial transcription factor code that defines cell types across all parts of the brain. The whole mouse brain transcriptomic and spatial cell-type atlas establishes a benchmark reference atlas and a foundational resource for integrative investigations of cellular and circuit function, development and evolution of the mammalian brain.
0
Citation73
-1
Save
0

Functional enhancer elements drive subclass-selective expression from mouse to primate neocortex

John Mich et al.May 6, 2020
+36
E
L
J
Summary Viral genetic tools to target specific brain cell types in humans and non-genetic model organisms will transform basic neuroscience and targeted gene therapy. Here we used comparative epigenetics to identify thousands of human neuronal subclass-specific putative enhancers to regulate viral tools, and 34% of these were conserved in mouse. We established an AAV platform to evaluate cellular specificity of functional enhancers by multiplexed fluorescent in situ hybridization (FISH) and single cell RNA sequencing. Initial testing in mouse neocortex yields a functional enhancer discovery success rate of over 30%. We identify enhancers with specificity for excitatory and inhibitory classes and subclasses including PVALB, LAMP5, and VIP/LAMP5 cells, some of which maintain specificity in vivo or ex vivo in monkey and human neocortex. Finally, functional enhancers can be proximal or distal to cellular marker genes, conserved or divergent across species, and could yield brain-wide specificity greater than the most selective marker genes.
0
Citation10
0
Save
21

Signature morpho-electric properties of diverse GABAergic interneurons in the human neocortex

Brian Lee et al.Oct 24, 2023
+91
J
R
B
Abstract Human cortical interneurons have been challenging to study due to high diversity and lack of mature brain tissue platforms and genetic targeting tools. We employed rapid GABAergic neuron viral labeling plus unbiased Patch-seq sampling in brain slices to define the signature morpho-electric properties of GABAergic neurons in the human neocortex. Viral targeting greatly facilitated sampling of the SST subclass, including primate specialized double bouquet cells which mapped to two SST transcriptomic types. Multimodal analysis uncovered an SST neuron type with properties inconsistent with original subclass assignment; we instead propose reclassification into PVALB subclass. Our findings provide novel insights about functional properties of human cortical GABAergic neuron subclasses and types and highlight the essential role of multimodal annotation for refinement of emerging transcriptomic cell type taxonomies. One Sentence Summary Viral genetic labeling of GABAergic neurons in human ex vivo brain slices paired with Patch-seq recording yields an in-depth functional annotation of human cortical interneuron subclasses and types and highlights the essential role of multimodal functional annotation for refinement of emerging transcriptomic cell type taxonomies.
21
Citation7
0
Save
15

Transcriptomic cytoarchitecture reveals principles of human neocortex organization

Nikolas Jorstad et al.Oct 24, 2023
+40
N
J
N
Abstract Variation in cortical cytoarchitecture is the basis for histology-based definition of cortical areas, such as Brodmann areas. Single cell transcriptomics enables higher-resolution characterization of cell types in human cortex, which we used to revisit the idea of the canonical cortical microcircuit and to understand functional areal specialization. Deeply sampled single nucleus RNA-sequencing of eight cortical areas spanning cortical structural variation showed highly consistent cellular makeup for 24 coarse cell subclasses. However, proportions of excitatory neuron subclasses varied strikingly, reflecting differences in intra- and extracortical connectivity across primary sensorimotor and association cortices. Astrocytes and oligodendrocytes also showed differences in laminar organization across areas. Primary visual cortex showed dramatically different organization, including major differences in the ratios of excitatory to inhibitory neurons, expansion of layer 4 excitatory neuron types and specialized inhibitory neurons. Finally, gene expression variation in conserved neuron subclasses predicts differences in synaptic function across areas. Together these results provide a refined cellular and molecular characterization of human cortical cytoarchitecture that reflects functional connectivity and predicts areal specialization.
44

Epigenomic complexity of the human brain revealed by single-cell DNA methylomes and 3D genome structures

Wei Tian et al.Oct 24, 2023
+35
A
J
W
Delineating the gene regulatory programs underlying complex cell types is fundamental for understanding brain functions in health and disease. Here, we comprehensively examine human brain cell epigenomes by probing DNA methylation and chromatin conformation at single-cell resolution in over 500,000 cells from 46 brain regions. We identified 188 cell types and characterized their molecular signatures. Integrative analyses revealed concordant changes in DNA methylation, chromatin accessibility, chromatin organization, and gene expression across cell types, cortical areas, and basal ganglia structures. With these resources, we developed scMCodes that reliably predict brain cell types using their methylation status at select genomic sites. This multimodal epigenomic brain cell atlas provides new insights into the complexity of cell type-specific gene regulation in the adult human brain.
44
Citation6
0
Save
14

Single-cell RNA-seq uncovers shared and distinct axes of variation in dorsal LGN neurons in mice, non-human primates and humans

Trygve Bakken et al.Oct 24, 2023
+25
V
C
T
ABSTRACT Abundant anatomical and physiological evidence supports the presence of at least three distinct types of relay glutamatergic neurons in the primate dorsal lateral geniculate nucleus (dLGN) of the thalamus, the brain region that conveys visual information from the retina to the primary visual cortex. Relay neuron diversity has also been described in the mouse dLGN (also known as LGd). Different types of relay neurons in mice, humans and macaques have distinct morphologies, distinct connectivity patterns, and convey different aspects of visual information to the cortex. To investigate the molecular underpinnings of these cell types, and how these relate to other cellular properties and differences in dLGN between human, macaque, and mice, we profiled gene expression in single nuclei and cells using RNA-sequencing. These efforts identified four distinct types of relay neurons in the primate dLGN, magnocellular neurons, parvocellular neurons, and two cell types expressing canonical marker genes for koniocellular neurons. Surprisingly, despite extensive documented morphological and physiological differences between magno- and parvocellular neurons, we identified few genes with significant differential expression between transcriptomic cell types corresponding to these two neuronal populations. We also detected strong donor-specific gene expression signatures in both macaque and human relay neurons. Likewise, the dominant feature of relay neurons of the adult mouse dLGN is high transcriptomic similarity, with an axis of heterogeneity that aligns with core vs. shell portions of mouse dLGN. Together, these data show that transcriptomic differences between principal cell types in the mature mammalian dLGN are subtle relative to striking differences in morphology and cortical projection targets. Finally, we align cellular expression profiles across species and find homologous types of relay neurons in macaque and human, and distinct relay neurons in mouse.
115

Regional, layer, and cell-class specific connectivity of the mouse default mode network

Jennifer Whitesell et al.Oct 24, 2023
+26
L
A
J
Abstract The evolutionarily conserved default mode network (DMN) is characterized by temporally correlated activity between brain regions during resting states. The DMN has emerged as a selectively vulnerable network in multiple disorders, so understanding its anatomical composition will provide fundamental insight into how its function is impacted by disease. Reproducible rodent analogs of the human DMN offer an opportunity to investigate the underlying brain regions and structural connectivity (SC) with high spatial and cell type resolution. Here, we performed systematic analyses using mouse resting state functional magnetic resonance imaging to identify the DMN and whole brain axonal tracing data, co-registered to the 3D Allen Mouse Common Coordinate Framework reference atlas. We identified the specific, predominantly cortical, brain regions comprising the mouse DMN and report preferential SC between these regions. Next, at the cell class level, we report that cortical layer (L) 2/3 neurons in DMN regions project almost exclusively to other DMN regions, whereas L5 neurons project to targets both in and out of the DMN. We then test the hypothesis that in- and out-DMN projection patterns originate from distinct L5 neuron sub-classes using an intersectional viral tracing strategy to label all the axons from neurons defined by a single target. In the ventral retrosplenial cortex, a core DMN region, we found two L5 projection types related to the DMN and mapped them to unique transcriptomically-defined cell types. Together, our results provide a multi-scale description of the anatomical correlates of the mouse DMN.
1

Target cell-specific synaptic dynamics of excitatory to inhibitory neuron connections in supragranular layers of human neocortex

Mean-Hwan Kim et al.Oct 24, 2023
+34
E
C
M
ABSTRACT Rodent studies have demonstrated that synaptic dynamics from excitatory to inhibitory neuron types are often dependent on the target cell type. However, these target cell-specific properties have not been well investigated in human cortex, where there are major technical challenges in reliably identifying cell types. Here, we take advantage of newly developed methods for human neurosurgical tissue analysis with multiple patch-clamp recordings, post-hoc fluorescent in situ hybridization (FISH), and prospective GABAergic AAV-based labeling to investigate synaptic properties between pyramidal neurons and PVALB- vs. SST- positive interneurons. We find that there are robust molecular differences in synapse-associated genes between these neuron types, and that individual presynaptic pyramidal neurons evoke postsynaptic responses with heterogeneous synaptic dynamics in different postsynaptic cell types. Using molecular identification with FISH and classifiers based on transcriptomically identified PVALB neurons analyzed with Patch-seq methods, we find that PVALB neurons typically show depressing synaptic characteristics, whereas other interneuron types including SST-positive neurons show facilitating characteristics. Together, these data support the existence of target cell-specific synaptic properties in human cortex that are similar to rodent, thereby indicating evolutionary conservation of local circuit connectivity motifs from excitatory to inhibitory neurons and their synaptic dynamics.
1
Citation3
0
Save
38

A comparative atlas of single-cell chromatin accessibility in the human brain

Yang Li et al.Oct 24, 2023
+35
M
S
Y
Abstract The human brain contains an extraordinarily diverse set of neuronal and glial cell types. Recent advances in single cell transcriptomics have begun to delineate the cellular heterogeneity in different brain regions, but the transcriptional regulatory programs responsible for the identity and function of each brain cell type remain to be defined. Here, we carried out single nucleus ATAC-seq analysis to probe the open chromatin landscape from over 1.1 million cells in 42 brain regions of three neurotypical adult donors. Integrative analysis of the resulting data identified 107 distinct cell types and revealed the cell-type-specific usage of 544,735 candidate cis-regulatory DNA elements (cCREs) in the human genome. Nearly 1/3 of them displayed sequence conservation as well as chromatin accessibility in the mouse brain. On the other hand, nearly 40% cCREs were human specific, with chromatin accessibility associated with species-restricted gene expression. Interestingly, these human specific cCREs were enriched for distinct families of retrotransposable elements, which displayed cell-type-specific chromatin accessibility. We uncovered strong associations between specific brain cell types and neuropsychiatric disorders. We futher developed deep learning models to predict regulatory function of non-coding disease risk variants.
38
Citation2
0
Save
1

Inter-individual variation in human cortical cell type abundance and expression

Nelson Johansen et al.Oct 24, 2023
+27
K
S
N
Abstract Single cell transcriptomic studies have identified a conserved set of neocortical cell types from small post-mortem cohorts. We extend these efforts by assessing cell type variation across 75 adult individuals undergoing epilepsy and tumor surgeries. Nearly all nuclei map to one of 125 robust cell types identified in middle temporal gyrus, but with varied abundances and gene expression signatures across donors, particularly in deep layer glutamatergic neurons. A minority of variance is explainable by known factors including donor identity and small contributions from age, sex, ancestry, and disease state. Genomic variation was significantly associated with variable expression of 150-250 genes for most cell types. Thus, human individuals display a highly consistent cellular makeup, but with significant variation reflecting donor characteristics, disease condition, and genetic regulation. One-Sentence Summary Inter-individual variation in human cortex is greatest for deep layer excitatory neurons and largely unexplainable by known factors.
1
Citation2
0
Save
Load More