NS
Nicole Soranzo
Author with expertise in Genomic Studies and Association Analyses
Achievements
Cited Author
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
86
(76% Open Access)
Cited by:
34,317
h-index:
130
/
i10-index:
279
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Genomic atlas of the human plasma proteome

Benjamin Sun et al.May 29, 2018
Although plasma proteins have important roles in biological processes and are the direct targets of many drugs, the genetic factors that control inter-individual variation in plasma protein levels are not well understood. Here we characterize the genetic architecture of the human plasma proteome in healthy blood donors from the INTERVAL study. We identify 1,927 genetic associations with 1,478 proteins, a fourfold increase on existing knowledge, including trans associations for 1,104 proteins. To understand the consequences of perturbations in plasma protein levels, we apply an integrated approach that links genetic variation with biological pathway, disease, and drug databases. We show that protein quantitative trait loci overlap with gene expression quantitative trait loci, as well as with disease-associated loci, and find evidence that protein biomarkers have causal roles in disease using Mendelian randomization analysis. By linking genetic factors to diseases via specific proteins, our analyses highlight potential therapeutic targets, opportunities for matching existing drugs with new disease indications, and potential safety concerns for drugs under development. A genetic atlas of the human plasma proteome, comprising 1,927 genetic associations with 1,478 proteins, identifies causes of disease and potential drug targets.
0
Citation1,519
0
Save
0

Common variants near MC4R are associated with fat mass, weight and risk of obesity

Ruth Loos et al.May 4, 2008
To identify common variants influencing body mass index (BMI), we analyzed genome-wide association data from 16,876 individuals of European descent. After previously reported variants in FTO, the strongest association signal (rs17782313, P = 2.9 × 10−6) mapped 188 kb downstream of MC4R (melanocortin-4 receptor), mutations of which are the leading cause of monogenic severe childhood-onset obesity. We confirmed the BMI association in 60,352 adults (per-allele effect = 0.05 Z-score units; P = 2.8 × 10−15) and 5,988 children aged 7–11 (0.13 Z-score units; P = 1.5 × 10−8). In case-control analyses (n = 10,583), the odds for severe childhood obesity reached 1.30 (P = 8.0 × 10−11). Furthermore, we observed overtransmission of the risk allele to obese offspring in 660 families (P (pedigree disequilibrium test average; PDT-avg) = 2.4 × 10−4). The SNP location and patterns of phenotypic associations are consistent with effects mediated through altered MC4R function. Our findings establish that common variants near MC4R influence fat mass, weight and obesity risk at the population level and reinforce the need for large-scale data integration to identify variants influencing continuous biomedical traits.
0
Citation1,305
0
Save
0

An atlas of genetic influences on human blood metabolites

So–Youn Shin et al.May 11, 2014
Nicole Soranzo, Tim Spector, Gabi Kastenmüller and colleagues report a large-scale analysis of genetic variants influencing human blood metabolite levels. They identify genome-wide significant associations at 145 loci, providing a framework for exploring relationships between genetic variation, metabolism and complex disease. Genome-wide association scans with high-throughput metabolic profiling provide unprecedented insights into how genetic variation influences metabolism and complex disease. Here we report the most comprehensive exploration of genetic loci influencing human metabolism thus far, comprising 7,824 adult individuals from 2 European population studies. We report genome-wide significant associations at 145 metabolic loci and their biochemical connectivity with more than 400 metabolites in human blood. We extensively characterize the resulting in vivo blueprint of metabolism in human blood by integrating it with information on gene expression, heritability and overlap with known loci for complex disorders, inborn errors of metabolism and pharmacological targets. We further developed a database and web-based resources for data mining and results visualization. Our findings provide new insights into the role of inherited variation in blood metabolic diversity and identify potential new opportunities for drug development and for understanding disease.
0
Citation1,261
0
Save
Load More