TG
Tamara Gilbert
Author with expertise in Advanced Techniques in Bioimage Analysis and Microscopy
Achievements
Open Access Advocate
Cited Author
Key Stats
Upvotes received:
0
Publications:
4
(75% Open Access)
Cited by:
248
h-index:
12
/
i10-index:
14
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
37

Optimizing the Cell Painting assay for image-based profiling

Beth Cimini et al.Jul 13, 2022
Abstract In image-based profiling, software extracts thousands of morphological features of cells from multi-channel fluorescence microscopy images, yielding single-cell profiles that can be used for basic research and drug discovery. Powerful applications have been proven, including clustering chemical and genetic perturbations based on their similar morphological impact, identifying disease phenotypes by observing differences in profiles between healthy and diseased cells, and predicting assay outcomes using machine learning, among many others. Here we provide an updated protocol for the most popular assay for image-based profiling, Cell Painting. Introduced in 2013, it uses six stains imaged in five channels and labels eight diverse components of the cell: DNA, cytoplasmic RNA, nucleoli, actin, Golgi apparatus, plasma membrane, endoplasmic reticulum, and mitochondria. The original protocol was updated in 2016 based on several years’ experience running it at two sites, after optimizing it by visual stain quality. Here we describe the work of the Joint Undertaking for Morphological Profiling (JUMP) Cell Painting Consortium, aiming to improve upon the assay via quantitative optimization, based on the measured ability of the assay to detect morphological phenotypes and group similar perturbations together. We find that the assay gives very robust outputs despite a variety of changes to the protocol and that two vendors’ dyes work equivalently well. We present Cell Painting version 3, in which some steps are simplified and several stain concentrations can be reduced, saving costs. Cell culture and image acquisition take 1–2 weeks for a typically sized batch of 20 or fewer plates; feature extraction and data analysis take an additional 1–2 weeks. Key references using this protocol Virtual screening for small-molecule pathway regulators by image-profile matching ( https://doi.org/10.1016/j.cels.2022.08.003 ) - recent work examining the ability to use collected Cell Painting profiles to screen for regulators of a number of diverse biological pathways. JUMP Cell Painting dataset: images and profiles from two billion cells perturbed by 140,000 chemical and genetic perturbations (DOI) - the description of the main JUMP master public data set, using this protocol in the production of >200 TB of image data and >200 TB of measured profiles. Key data used in this protocol Cell Painting, a high-content image-based assay for morphological profiling using multiplexed fluorescent dyes ( https://doi.org/10.1038/nprot.2016.105 ) - this paper provides the first step-by-step Cell Painting protocol ever released.
37
Citation16
0
Save
0

In-Depth Characterization and Validation in BRG1-Mutant Lung Cancers Define Novel Catalytic Inhibitors of SWI/SNF Chromatin Remodeling

Zainab Jagani et al.Oct 22, 2019
Members of the ATP-dependent SWI/SNF chromatin remodeling complexes are among the most frequently mutated genes in cancer, suggesting their dysregulation plays a critical role. The synthetic lethality between SWI/SNF catalytic subunits BRM/SMARCA2 and BRG1/SMARCA4 has instigated great interest in targeting BRM. Here we have performed a critical and in-depth investigation of novel dual inhibitors (BRM011 and BRM014) of BRM and BRG1 in order to validate their utility as chemical probes of SWI/SNF catalytic function, while obtaining insights into the therapeutic potential of SWI/SNF inhibition. In corroboration of on-target activity, we discovered compound resistant mutations through pooled screening of BRM variants in BRG1-mut cancer cells. Strikingly, genome-wide transcriptional and chromatin profiling (ATAC-Seq) provided further evidence of pharmacological perturbation of SWI/SNF chromatin remodeling as BRM011 treatment induced specific changes in chromatin accessibility and gene expression similar to genetic depletion of BRM. Finally, these compounds have the capacity to inhibit the growth of tumor-xenografts, yielding important insights into the feasibility of developing BRM/BRG1 ATPase inhibitors for the treatment of BRG1-mut lung cancers. Overall, our studies not only establish the feasibility of inhibiting SWI/SNF catalytic function, providing a framework for SWI/SNF therapeutic targeting, but have also yielded successful elucidation of small-molecule inhibitors that will be of importance in probing SWI/SNF function in various disease contexts.