TS
Tomke Stürner
Author with expertise in Neuroscience and Genetics of Drosophila Melanogaster
Achievements
Open Access Advocate
Cited Author
Key Stats
Upvotes received:
0
Publications:
7
(100% Open Access)
Cited by:
24
h-index:
10
/
i10-index:
11
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
21

Achieving functional neuronal dendrite structure through sequential stochastic growth and retraction

André Castro et al.Jul 10, 2020
Abstract Class I ventral posterior dendritic arborisation (c1vpda) proprioceptive sensory neurons respond to contractions in the Drosophila larval body wall during crawling. Their dendritic branches run along the direction of contraction, possibly a functional requirement to maximise membrane curvature during crawling contractions. Although the molecular machinery of dendritic patterning in c1vpda has been extensively studied, the process leading to the precise elaboration of their comb-like shapes remains elusive. Here, to link dendrite shape with its proprioceptive role, we performed long-term, non-invasive, in vivo time-lapse imaging of c1vpda embryonic and larval morphogenesis to reveal a sequence of differentiation stages. We combined computer models and dendritic branch dynamics tracking to propose that distinct sequential phases of targeted growth and stochastic retraction achieve efficient dendritic trees both in terms of wire and function. Our study shows how dendrite growth balances structure–function requirements, shedding new light on general principles of self-organisation in functionally specialised dendrites. In brief An optimal wire and function trade-off emerges from noisy growth and stochastic retraction during Drosophila class I ventral posterior dendritic arborisation (c1vpda) dendrite development. Highlights C1vpda dendrite outgrowth follows wire constraints. Stochastic retraction of functionally suboptimal branches in a subsequent growth phase. C1vpda growth rules favour branches running parallel to larval body wall contraction. Comprehensive growth model reproduces c1vpda development in silico .
28

The branching code: a model of actin-driven dendrite arborisation

Tomke Stürner et al.Oct 3, 2020
Summary Dendrites display a striking variety of neuronal type-specific morphologies, but the mechanisms and principles underlying such diversity remain elusive. A major player in defining the morphology of dendrites is the neuronal cytoskeleton, including evolutionarily conserved actin-modulatory proteins (AMPs). Still, we lack a clear understanding of how AMPs might support developmental phenomena such as neuron-type specific dendrite dynamics. To address precisely this level of in vivo specificity, we concentrated on a defined neuronal type, the class III dendritic arborisation (c3da) neuron of Drosophila larvae, displaying actin-enriched short terminal branchlets (STBs). Computational modelling reveals that the main branches of c3da neurons follow a general growth model based on optimal wiring, but the STBs do not. Instead, model STBs are defined by a short reach and a high affinity to grow towards the main branches. We thus concentrated on c3da STBs and developed new methods to quantitatively describe dendrite morphology and dynamics based on in vivo time-lapse imaging of mutants lacking individual AMPs. In this way, we extrapolated the role of these AMPs in defining STB properties. We propose that dendrite diversity is supported by the combination of a common step, refined by a neuron type-specific second level. For c3da neurons, we present a molecular model of how the combined action of multiple AMPs in vivo define the properties of these second level specialisations, the STBs. In brief A quantitative morphological dissection of the concerted actin-modulatory protein actions provides a model of dendrite branchlet outgrowth. Highlights Actin organisation in small terminal branchlets of Drosophila class III dendritic arborisation neurons Six actin-modulatory proteins individually control the characteristic morphology and dynamics of branchlets Quantitative tools for dendrite morphology and branch dynamics enable a comparative analysis A two-step computational growth model reproduces c3da dendrite morphology
28
Citation2
0
Save
0

Comparative connectomics of the descending and ascending neurons of theDrosophilanervous system: stereotypy and sexual dimorphism

Tomke Stürner et al.Jun 6, 2024
Abstract In most complex nervous systems there is a clear anatomical separation between the nerve cord, which contains most of the final motor outputs necessary for behaviour, and the brain. In insects, the neck connective is both a physical and information bottleneck connecting the brain and the ventral nerve cord (VNC, spinal cord analogue) and comprises diverse populations of descending (DN), ascending (AN) and sensory ascending neurons, which are crucial for sensorimotor signalling and control. Integrating three separate EM datasets, we now provide a complete connectomic description of the ascending and descending neurons of the female nervous system of Drosophila and compare them with neurons of the male nerve cord. Proofread neuronal reconstructions have been matched across hemispheres, datasets and sexes. Crucially, we have also matched 51% of DN cell types to light level data defining specific driver lines as well as classifying all ascending populations. We use these results to reveal the general architecture, tracts, neuropil innervation and connectivity of neck connective neurons. We observe connected chains of descending and ascending neurons spanning the neck, which may subserve motor sequences. We provide a complete description of sexually dimorphic DN and AN populations, with detailed analysis of circuits implicated in sex-related behaviours, including female ovipositor extrusion (DNp13), male courtship (DNa12/aSP22) and song production (AN hemilineage 08B). Our work represents the first EM-level circuit analyses spanning the entire central nervous system of an adult animal.
3

Transforming descending input into behavior: The organization of premotor circuits in theDrosophilaMale Adult Nerve Cord connectome

Han Cheong et al.Jun 7, 2023
Abstract In most animals, a relatively small number of descending neurons (DNs) connect higher brain centers in the animal’s head to motor neurons (MNs) in the nerve cord of the animal’s body that effect movement of the limbs. To understand how brain signals generate behavior, it is critical to understand how these descending pathways are organized onto the body MNs. In the fly, Drosophila melanogaster, MNs controlling muscles in the leg, wing, and other motor systems reside in a ventral nerve cord (VNC), analogous to the mammalian spinal cord. In companion papers, we introduced a densely-reconstructed connectome of the Drosophila Male Adult Nerve Cord (MANC, Takemura et al., 2023), including cell type and developmental lineage annotation (Marin et al., 2023), which provides complete VNC connectivity at synaptic resolution. Here, we present a first look at the organization of the VNC networks connecting DNs to MNs based on this new connectome information. We proofread and curated all DNs and MNs to ensure accuracy and reliability, then systematically matched DN axon terminals and MN dendrites with light microscopy data to link their VNC morphology with their brain inputs or muscle targets. We report both broad organizational patterns of the entire network and fine-scale analysis of selected circuits of interest. We discover that direct DN-MN connections are infrequent and identify communities of intrinsic neurons linked to control of different motor systems, including putative ventral circuits for walking, dorsal circuits for flight steering and power generation, and intermediate circuits in the lower tectulum for coordinated action of wings and legs. Our analysis generates hypotheses for future functional experiments and, together with the MANC connectome, empowers others to investigate these and other circuits of the Drosophila ventral nerve cord in richer mechanistic detail.
9

Systematic annotation of a complete adult maleDrosophilanerve cord connectome reveals principles of functional organisation

Elizabeth Marin et al.Jun 6, 2023
Summary Our companion paper (Takemura et al., 2023) introduces the first completely proofread connectome of the nerve cord of an animal that can walk or fly. The base connectome consists of neuronal morphologies and the connections between them. However, in order to efficiently navigate and understand this connectome, it is crucial to have a system of annotations that systematically categorises and names neurons, linking them to the existing literature. In this paper we describe the comprehensive annotation of the VNC connectome, first by a system of hierarchical coarse annotations, then by grouping left-right and serially homologous neurons and eventually by defining systematic cell types for the intrinsic interneurons and sensory neurons of the VNC; descending and motor neurons are typed in (Cheong et al., 2023). We assign a sensory modality to over 5000 sensory neurons, cluster them by connectivity, and identify serially homologous cell types and a layered organisation likely corresponding to peripheral topography. We identify the developmental neuroblast of origin of the large majority of VNC neurons and confirm that (in most cases) all secondary neurons of each hemilineage express a single neurotransmitter. Neuroblast hemilineages are serially repeated along the segments of the nerve cord and generally exhibit consistent hemilineage-to-hemilineage connectivity across neuromeres, supporting the idea that hemilineages are a major organisational feature of the VNC. We also find that more than a third of individual neurons belong to serially homologous cell types, which were crucial for identifying motor neurons and sensory neurons across leg neuropils. Categorising interneurons by their neuropil innervation patterns provides an additional organisation axis. Over half of the intrinsic neurons of the VNC appear dedicated to the legs, with the majority restricted to single leg neuropils; in contrast, inhibitory interneurons connecting different leg neuropils, especially those crossing the midline, appear rarer than anticipated by standard models of locomotor circuitry. Our annotations are being released as part of the neuprint.janelia.org web application and also serve as the basis of programmatic analysis of the connectome through dedicated tools that we describe in this paper.