SS
Sergio Salas
Author with expertise in Comprehensive Integration of Single-Cell Transcriptomic Data
Achievements
Open Access Advocate
Cited Author
Key Stats
Upvotes received:
0
Publications:
12
(83% Open Access)
Cited by:
61
h-index:
8
/
i10-index:
8
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Interneuron diversity in the human dorsal striatum

Leonardo Garma et al.Jul 22, 2024
Abstract Deciphering the striatal interneuron diversity is key to understanding the basal ganglia circuit and to untangling the complex neurological and psychiatric diseases affecting this brain structure. We performed snRNA-seq and spatial transcriptomics of postmortem human caudate nucleus and putamen samples to elucidate the diversity and abundance of interneuron populations and their inherent transcriptional structure in the human dorsal striatum. We propose a comprehensive taxonomy of striatal interneurons with eight main classes and fourteen subclasses, providing their full transcriptomic identity and spatial expression profile as well as additional quantitative FISH validation for specific populations. We have also delineated the correspondence of our taxonomy with previous standardized classifications and shown the main transcriptomic and class abundance differences between caudate nucleus and putamen. Notably, based on key functional genes such as ion channels and synaptic receptors, we found matching known mouse interneuron populations for the most abundant populations, the recently described PTHLH and TAC3 interneurons. Finally, we were able to integrate other published datasets with ours, supporting the generalizability of this harmonized taxonomy.
13

Direct RNA targeted transcriptomic profiling in tissue using Hybridization-based RNA In Situ Sequencing (HybRISS)

Hower Lee et al.Dec 2, 2020
Highly multiplexed spatial mapping of multiple transcripts within tissues allows for investigation of the transcriptomic and cellular diversity of mammalian organs previously unseen. Here we explore the possibilities of a direct RNA (dRNA) detection approach incorporating the use of padlock probes and rolling circle amplification in combination with hybridization-based in situ sequencing (HybISS) chemistry. We benchmark a dRNA targeting kit that circumvents the standard reverse transcription limiting, cDNA-based in situ sequencing (ISS). We found a five-fold increase in transcript detection efficiency when compared to cDNA-based ISS and also validated its multiplexing capability by targeting a curated panel of 50 genes from previous publications on mouse brain sections, leading to additional data interpretation such as de novo cell typing. With this increased efficiency, we maintain specificity, multiplexing capabilities and ease of implementation. Overall, the dRNA chemistry shows significant improvements in target detection efficiency, closing the gap between the gold standard of fluorescent in situ hybridization (FISH) based technologies and opens up possibilities to explore new biological questions previously not possible with cDNA-based ISS, nor with FISH.
0

Hybridization-based In Situ Sequencing (HybISS): spatial transcriptomic detection in human and mouse brain tissue

Daniel Gyllborg et al.Feb 3, 2020
Visualization of the transcriptome in situ has proven to be a valuable tool in exploring single-cell RNA-sequencing data, providing an additional dimension to investigate spatial cell typing and cell atlases, disease architecture or even data driven discoveries. The field of spatially resolved transcriptomic technologies is emerging as a vital tool to profile gene-expression, continuously pushing current methods to accommodate larger gene panels and larger areas without compromising throughput efficiency. Here, we describe a new version of the in situ sequencing (ISS) method based on padlock probes and rolling circle amplification. Modifications in probe design allows for a new barcoding system via sequence-by-hybridization chemistry for improved spatial detection of RNA transcripts. Due to the amplification of probes, amplicons can be visualized with standard epifluorescence microscopes with high-throughput efficiency and the new sequencing chemistry removes limitations bound by sequence-by-ligation chemistry of ISS. Here we present hybridization-based in situ sequencing (HybISS) that allows for increased flexibility and multiplexing, increased signal-to-noise, all without compromising throughput efficiency of imaging large fields of view. Moreover, the current protocol is demonstrated to work on human brain tissue samples, a source that has proven to be difficult to work with image-based spatial analysis techniques. Overall, HybISS technology works as a target amplification detection method for improved spatial transcriptomic visualization, and importantly, with an ease of implementation.
2

BirthSeq, a new method to isolate and analyze dated cells from any tissue in vertebrates

Eneritz Rueda-Alaña et al.Oct 10, 2023
ABSTRACT Embryonic development is a complex and dynamic process that unfolds over time and involves the production of increasing numbers of cells, as well as the diversification of different cell types. The impact of developmental time on the formation of the central nervous system is well-documented, with evidence showing that time plays a critical role in establishing the identity of neuronal subtypes. However, the study of how time translates into genetic instructions driving cell fate is limited by the scarcity of suitable experimental tools. We introduce BirthSeq , a new method for isolating and analyzing cells based on their birth date. This innovative technique allows for in vivo labeling of cells, isolation via FACS, and analysis using high-throughput techniques. We demonstrate the effectiveness of BirthSeq for single-cell RNA sequencing and novel spatially resolved transcriptomic approaches in brain development across three vertebrate species (mouse, chick, and gecko). Overall, BirthSeq provides a versatile tool for studying any tissue in any vertebrate organism, helping to fill the necessity in developmental biology research by targeting cells and their temporal cues. SUMMARY STATEMENT BirthSeq allows the isolation and investigation of alive cells according to their birthdate, in any kind of tissue and vertebrate species.
Load More