JS
Jay Shendure
Author with expertise in Comprehensive Integration of Single-Cell Transcriptomic Data
Achievements
Cited Author
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
51
(55% Open Access)
Cited by:
385
h-index:
107
/
i10-index:
189
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
1

Multiplex genomic recording of enhancer and signal transduction activity in mammalian cells

Wei Chen et al.Nov 5, 2021
Abstract Measurements of gene expression and signal transduction activity are conventionally performed with methods that require either the destruction or live imaging of a biological sample within the timeframe of interest. Here we demonstrate an alternative paradigm, termed ENGRAM ( EN hancer-driven G enomic R ecording of transcriptional A ctivity in M ultiplex), in which the activity and dynamics of multiple transcriptional reporters are stably recorded to DNA. ENGRAM is based on the prime editing-mediated insertion of signal- or enhancer-specific barcodes to a genomically encoded recording unit. We show how this strategy can be used to concurrently genomically record the relative activity of at least hundreds of enhancers with high fidelity, sensitivity and reproducibility. Leveraging synthetic enhancers that are responsive to specific signal transduction pathways, we further demonstrate time- and concentration-dependent genomic recording of Wnt, NF-κB, and Tet-On activity. Finally, by coupling ENGRAM to sequential genome editing, we show how serially occurring molecular events can potentially be ordered. Looking forward, we envision that multiplex, ENGRAM-based recording of the strength, duration and order of enhancer and signal transduction activities has broad potential for application in functional genomics, developmental biology and neuroscience.
1
Citation30
0
Save
91

Rapid cost-effective viral genome sequencing by V-seq

Longhua Guo et al.Aug 15, 2020
ABSTRACT Conventional methods for viral genome sequencing largely use metatranscriptomic approaches or, alternatively, enrich for viral genomes by amplicon sequencing with virus-specific PCR or hybridization-based capture. These existing methods are costly, require extensive sample handling time, and have limited throughput. Here, we describe V-seq, an inexpensive, fast, and scalable method that performs targeted viral genome sequencing by multiplexing virus-specific primers at the cDNA synthesis step. We designed densely tiled reverse transcription (RT) primers across the SARS-CoV-2 genome, with a subset of hexamers at the 3’ end to minimize mis-priming from the abundant human rRNA repeats and human RNA PolII transcriptome. We found that overlapping RT primers do not interfere, but rather act in concert to improve viral genome coverage in samples with low viral load. We provide a path to optimize V-seq with SARS-CoV-2 as an example. We anticipate that V-seq can be applied to investigate genome evolution and track outbreaks of RNA viruses in a cost-effective manner. More broadly, the multiplexed RT approach by V-seq can be generalized to other applications of targeted RNA sequencing.
91
Citation13
0
Save
84

Precise genomic deletions using paired prime editing

Junhong Choi et al.Jan 2, 2021
Abstract Technologies that precisely delete genomic sequences in a programmed fashion can be used to study function as well as potentially for gene therapy. The leading contemporary method for programmed deletion uses CRISPR/Cas9 and pairs of guide RNAs (gRNAs) to generate two nearby double-strand breaks, which is often followed by deletion of the intervening sequence during DNA repair. However, this approach can be inefficient and imprecise, with errors including small indels at the two target sites as well as unintended large deletions and more complex rearrangements. Here we describe a prime editing-based method that we term PRIME-Del , which induces a deletion using a pair of prime editing gRNAs (pegRNAs) that target opposite DNA strands, effectively programming not only the sites that are nicked but also the outcome of the repair. We demonstrate that PRIME-Del achieves markedly higher precision in programming deletions than CRISPR/Cas9 and gRNA pairs. We also show that PRIME-Del can be used to couple genomic deletions with short insertions, enabling deletions whose junctions do not fall at protospacer-adjacent motif (PAM) sites. Finally, we demonstrate that lengthening the time window of expression of prime editing components can substantially enhance efficiency without compromising precision. We anticipate that PRIME-Del will be broadly useful in enabling precise, flexible programming of genomic deletions, including in-frame deletions, as well as for epitope tagging and potentially for programming rearrangements.
84
Citation8
0
Save
34

Single-cell analysis of chromatin and expression reveals age- and sex-associated alterations in the human heart

David Read et al.Jul 13, 2022
Abstract Sex differences and age-related changes in the human heart at the tissue, cell, and molecular level have been well-documented and many may be relevant for cardiovascular disease. However, how molecular programs within individual cell types vary across individuals by age and sex remains poorly characterized. To better understand this variation, we performed single-nucleus combinatorial indexing (sci) ATAC- and RNA-Seq in human heart samples from nine donors. We identify hundreds of differentially expressed genes by age and sex. Sex dependent alterations include pathways such as TGFβ signaling and metabolic shifts by sex, evident in both transcriptional alterations and differing presence of transcription factor (TF) motifs in accessible chromatin. Age was associated with changes such as immune activation-related transcriptional and chromatin accessibility differences, as well as changes in the relative proportion of cardiomyocytes, neurons, and perivascular cells. In addition, we compare our adult-derived ATAC-Seq profiles to analogous fetal cell types to identify putative developmental-stage-specific regulatory factors. Finally, we train predictive models of cell-type-specific RNA expression levels utilizing ATAC-Seq profiles to link distal regulatory sequences to promoters, quantifying the predictive value of a simple TF-to-expression regulatory grammar and identifying cell-type-specific TFs.
34
Citation7
0
Save
85

Single-cell lineage and transcriptome reconstruction of metastatic cancer reveals selection of aggressive hybrid EMT states

Kamen Simeonov et al.Aug 12, 2020
Abstract Metastatic cancer remains largely incurable due to an incomplete understanding of how cancer cells disseminate throughout the body. However, tools for probing metastatic dissemination and associated molecular changes at high resolution are lacking. Here we present multiplexed, activatable, clonal, and subclonal GESTALT (macsGESTALT), an inducible lineage recorder with concurrent single cell readout of transcriptional and phylogenetic information. By integrating multiple copies of combined static barcodes and evolving CRISPR/Cas9 barcodes, macsGESTALT enables clonal tracing and subclonal phylogenetic reconstruction, respectively. High barcode editing and recovery rates produce deep lineage reconstructions, densely annotated with transcriptomic information. Applying macsGESTALT to a mouse model of metastatic pancreatic cancer, we reconstruct dissemination of tens-of-thousands of single cancer cells representing 95 clones and over 6,000 unique subclones across multiple distant sites, e.g. liver and lung metastases. Transcriptionally, cells exist along a continuum of epithelial-to-mesenchymal transition (EMT) in vivo with graded changes in associated signaling, metabolic, and regulatory processes. Lineage analysis reveals that from a majority of non-metastatic, highly epithelial clones, a single dominant clone that has progressed along EMT drives the majority of metastasis. Within this dominant clone a parallel process occurs, where a small number of aggressive subclones drive clonal outgrowth. By precisely mapping subclones along the EMT continuum, we find that size and dissemination gradually increase, peaking at late-hybrid EMT states but precipitously falling once subclones are highly mesenchymal. Late-hybrid EMT states are selected from a predominately epithelial ancestral pool, enabling rapid metastasis but also forcing extensive and continuous population bottlenecking. Notably, late-hybrid gene signatures are associated with decreased survival in human pancreatic cancer, while epithelial, early-hybrid, and highly mesenchymal states are not. Our findings illuminate features of metastasis and EMT with the potential for therapeutic exploitation. Ultimately, macsGESTALT provides a powerful, accessible tool for probing cancer and stem cell biology in vivo .
85
Citation6
0
Save
130

Tethering distinct molecular profiles of single cells by their lineage histories to investigate sources of cell state heterogeneity

Anna Minkina et al.May 12, 2022
Abstract Gene expression heterogeneity is ubiquitous within single cell datasets, even among cells of the same type. Heritable expression differences, defined here as those which persist over multiple cell divisions, are of particular interest, as they can underlie processes including cell differentiation during development as well as the clonal selection of drug-resistant cancer cells. However, heritable sources of variation are difficult to disentangle from non-heritable ones, such as cell cycle stage, asynchronous transcription, and measurement noise. Since heritable states should be shared by lineally related cells, we sought to leverage CRISPR-based lineage tracing, together with single cell molecular profiling, to discriminate between heritable and non-heritable variation in gene expression. We show that high efficiency capture of lineage profiles alongside single cell gene expression enables accurate lineage tree reconstruction and reveals an abundance of progressive, heritable gene expression changes. We find that a subset of these are likely mediated by structural genetic variation (copy number alterations, translocations), but that the stable attributes of others cannot be understood with expression data alone. Towards addressing this, we develop a method to capture cell lineage histories alongside single cell chromatin accessibility profiles, such that expression and chromatin accessibility of closely related cells can be linked via their lineage histories. We call this indirect “coassay” approach “THE LORAX” and leverage it to explore the genetic and epigenetic mechanisms underlying heritable gene expression changes. Using this approach, we show that we can discern between heritable gene expression differences mediated by large and small copy number changes, trans effects, and possible epigenetic variation.
130
Citation5
0
Save
1

Single-cell, whole-embryo phenotyping of mammalian developmental disorders

Xingfan Huang et al.Nov 15, 2023
Abstract Mouse models are a critical tool for studying human diseases, particularly developmental disorders 1 . However, conventional approaches for phenotyping may fail to detect subtle defects throughout the developing mouse 2 . Here we set out to establish single-cell RNA sequencing of the whole embryo as a scalable platform for the systematic phenotyping of mouse genetic models. We applied combinatorial indexing-based single-cell RNA sequencing 3 to profile 101 embryos of 22 mutant and 4 wild-type genotypes at embryonic day 13.5, altogether profiling more than 1.6 million nuclei. The 22 mutants represent a range of anticipated phenotypic severities, from established multisystem disorders to deletions of individual regulatory regions 4,5 . We developed and applied several analytical frameworks for detecting differences in composition and/or gene expression across 52 cell types or trajectories. Some mutants exhibit changes in dozens of trajectories whereas others exhibit changes in only a few cell types. We also identify differences between widely used wild-type strains, compare phenotyping of gain- versus loss-of-function mutants and characterize deletions of topological associating domain boundaries. Notably, some changes are shared among mutants, suggesting that developmental pleiotropy might be ‘decomposable’ through further scaling of this approach. Overall, our findings show how single-cell profiling of whole embryos can enable the systematic molecular and cellular phenotypic characterization of mouse mutants with unprecedented breadth and resolution.
1
Citation5
0
Save
Load More