Paper
Document
Submit new version
Download
Flag content
64

Swarm Learning for decentralized and confidential clinical machine learning

Authors
Stefanie Warnat-Herresthal,Hartmut Schultze
Krishnaprasad Lingadahalli Shastry,Sathyanarayanan Manamohan,Saikat Mukherjee,Vishesh Garg,Ravi Sarveswara,Kristian Händler,Peter Pickkers,N. Ahmad Aziz,Sofia Ktena,Florian Tran,Michael Bitzer,Stephan Ossowski,Nicolas Casadei,Christian Herr,Daniel Petersheim,Uta Behrends,Fabian Kern,Tobias Fehlmann,Philipp Schommers,Clara Lehmann,Max Augustin,Jan Rybniker,Janine Altmüller,Neha Mishra,Joana P. Bernardes,Benjamin Krämer,Lorenzo Bonaguro,Jonas Schulte-Schrepping,Elena De Domenico,Christian Siever,Michael Kraut,Milind Desai,Bruno Monnet,Maria Saridaki,Charles Martin Siegel,Anna Drews,Melanie Nuesch-Germano,Heidi Theis,Jan Heyckendorf,Stefan Schreiber,Sarah Kim-Hellmuth,Jacob Nattermann,Dirk Skowasch,Ingo Kurth,Andreas Keller,Robert Bals,Peter Nürnberg,Olaf Rieß,Philip Rosenstiel,Mihai G. Netea,Fabian Theis,Sach Mukherjee,Michael Backes,Anna C. Aschenbrenner,Thomas Ulas,Monique M. B. Breteler,Evangelos J. Giamarellos-Bourboulis,Matthijs Kox,Matthias Becker,Sorin Cheran,Michael S. Woodacre,Eng Lim Goh,Joachim L. Schultze,Harald Kühn,Christiane Kühl,Mihai Netea,Alexander Bartholomäus,Ezio Bonifacio,Markus Cornberg,Hajo Grundmann,Torsten Hain,Frank Hanses,Ute Hehr,André Heimbach,Marius Hoeper,Friedemann Horn,Daniel Hübschmann,Michael Hummel,Thomas Iftner,Angelika Iftner,Thomas Illig,Stefan Janssen,Jörn Kalinowski,René Kallies,Birte Kehr,Oliver Keppler,Christoph Klein,Michael Knop,Oliver Kohlbacher,Karl Köhrer,Jan Korbel,Peter Kremsner,Denise Kühnert,Markus Landthaler,Yang Li,Kerstin Ludwig,Oliwia Makarewicz,Manja Marz,Alice McHardy,Christian Mertes,Maximilian Münchhoff,Sven Nahnsen,Markus Nöthen,Francine Ntoumi,Jörg Overmann,Silke Peter,Klaus Pfeffer,Isabell Pink,Anna Poetsch,Ulrike Protzer,Alfred Pühler,Nikolaus Rajewsky,Markus Ralser,Kristin Reiche,Stephan Ripke,Ulisses Rocha,Antoine‐Emmanuel Saliba,Leif Sander,Birgit Sawitzki,Simone Scheithauer,Philipp Schiffer,Jonathan Schmid‐Burgk,Wulf Schneider,Eva-Christina Schulte,Alexander Sczyrba,Mariam Sharaf,Yogesh Singh,Michael Sonnabend,Oliver Stegle,Jens Stoye,Jörg Vehreschild,Thirumalaisamy Velavan,Jörg Vogel,Sonja Volland,Max Kleist,Andreas Walker,Jörn Walter,Dagmar Wieczorek,Sylke Winkler,John Ziebuhr,Monique Breteler,Evangelos Giamarellos‐Bourboulis,S.C. Cheran,Michael Woodacre,Eng Goh,Adam Grundhoff,Krishnaprasad Shastry,N. Aziz,Joana Bernardes,Elena Domenico,Charles Siegel,Paul Balfanz,Thomas Eggermann,Peter Boor,Ralf Hausmann,Hannah Kuhn,Susanne Isfort,Julia Stingl,Günther Schmalzing,Rainer Röhrig,Gernot Marx,Stefan Uhlig,Edgar Dahl,Dirk Müller‐Wieland,Michael Dreher,Nikolaus Marx,Anna Aschenbrenner,Angel Angelov,Anke Becker,Daniela Bezdan,Conny Blumert,Peer Bork,Boyke Bunk,Helmut Blum,Thomas Clavel,Maria Colomé-Tatché,Andreas Erhardt,Inti Velázquez,Andreas Diefenbach,Alexander Dilthey,Nicole Fischer,Konrad Förstner,Sören Franzenburg,Julia-Stefanie Frick,Gisela Gabernet,Julien Gagneur,Tina Ganzenmueller,Marie Gauder,Janina Geißert,Alexander Goesmann,Siri Göpel
+191 authors
,Joachim Schultze
Journal
Published
May 26, 2021
Show more
Save
TipTip
Document
Submit new version
Download
Flag content
64
TipTip
Save
Document
Submit new version
Download
Flag content

Abstract

Abstract Fast and reliable detection of patients with severe and heterogeneous illnesses is a major goal of precision medicine 1,2 . Patients with leukaemia can be identified using machine learning on the basis of their blood transcriptomes 3 . However, there is an increasing divide between what is technically possible and what is allowed, because of privacy legislation 4,5 . Here, to facilitate the integration of any medical data from any data owner worldwide without violating privacy laws, we introduce Swarm Learning—a decentralized machine-learning approach that unites edge computing, blockchain-based peer-to-peer networking and coordination while maintaining confidentiality without the need for a central coordinator, thereby going beyond federated learning. To illustrate the feasibility of using Swarm Learning to develop disease classifiers using distributed data, we chose four use cases of heterogeneous diseases (COVID-19, tuberculosis, leukaemia and lung pathologies). With more than 16,400 blood transcriptomes derived from 127 clinical studies with non-uniform distributions of cases and controls and substantial study biases, as well as more than 95,000 chest X-ray images, we show that Swarm Learning classifiers outperform those developed at individual sites. In addition, Swarm Learning completely fulfils local confidentiality regulations by design. We believe that this approach will notably accelerate the introduction of precision medicine.

Paper PDF

Empty State
This PDF hasn't been uploaded yet.
Do not upload any copyrighted content to the site, only open-access content.
or