Paper
Document
Download
Flag content
Preprint
61

Glycans on the SARS-CoV-2 Spike Control the Receptor Binding Domain Conformation

61
TipTip
Save
Document
Download
Flag content

Abstract

The glycan shield of the beta-coronavirus (β-CoV) Spike (S) glycoprotein provides protection from host immune responses, acting as a steric block to potentially neutralizing antibody responses. The conformationally dynamic S-protein is the primary immunogenic target of vaccine design owing to its role in host-cell fusion, displaying multiple receptor binding domain (RBD) 'up' and 'down' state configurations. Here, we investigated the potential for RBD adjacent, N-terminal domain (NTD) glycans to influence the conformational equilibrium of these RBD states. Using a combination of antigenic screens and high-resolution cryo-EM structure determination, we show that an N-glycan deletion at position 234 results in a dramatically reduced population of the 'up' state RBD position. Conversely, glycan deletion at position N165 results in a discernable increase in 'up' state RBDs. This indicates the glycan shield acts not only as a passive hinderance to antibody meditated immunity but also as a conformational control element. Together, our results demonstrate this highly dynamic conformational machine is responsive to glycan modification with implications in viral escape and vaccine design.

Paper PDF

Empty State
This PDF hasn't been uploaded yet.
Do not upload any copyrighted content to the site, only open-access content.
or